R统计绘图
文章平均质量分 94
EcoEvoPhylo
Research Interest: Microbial Metagenomics; Fish Genomics and Genetics; Evolutional Genetics; Bioinformatics
展开
-
R统计绘图-NMDS、环境因子拟合(线性和非线性)、多元统计(adonis2和ANOSIM)及绘图(双因素自定义图例)
在PCA、PCoA、CA和NMDS非约束排序方法中,只有NMDS不是基于特征向量的排序方法,不会最大化排序轴所代表的变量方差(可旋转轴,达到PCA的效果,PC1代表最大方差)。书中提到PCoA等的排序结果,可以作为NMDS的输入,用于将超过2-3D的数据空间,在2-3D的维度展示出来。)提到“NMDS分析对0值不太敏感,即使有较多的0,也可以得到较为稳健的结果”。如果拿不准要选择那种转换方法和距离指数,就在满足分析假设的前提下,把所有分析都做一遍,选择分析效果更好的方法就行,不要让自己陷入纠结,浪费时间。原创 2023-02-23 19:57:53 · 3507 阅读 · 0 评论 -
R统计绘图-PCA详解1(princomp/principal/prcomp/rda等)
PCA分析之后我们会得到主成分、主成分特征根以及变量(特征)得分,那么这些分析结果是怎么得到的呢?以及它们各自代表什么意义呢?带着这些疑问,我们可以开始学习此章节。主成分其实是分析用变量的规范化线性组合。PC1是能够最大程度解释数据中的方差的特征线性组合。PC2是另一种特征线性组合,其在保持与PC1方向上垂直(PC1与PC2完全不相关)的情况下,最大程度解释数据中的方差。PCA分析最多可以构造与变量数相等的PC(要求样本/观测数必须大于变量数)。PC3…PCn都遵循这个规则。图1|二维空间主成分示意图。原创 2023-02-23 19:29:10 · 2492 阅读 · 0 评论 -
R统计绘图 | 物种组成堆叠面积图(绝对/相对丰度,ggalluvial)
数据使用的不同处理土壤样品的微生物组成数据,包含物种丰度,分类单元和样本分组数据。此数据为虚构,可用于练习,请不要作他用。数据表和代码可从QQ交流群文件夹中下载,或EcoEvoPhylo公众号后台发送“Stackarea_map”获取。图3|按门汇总的各处理物种丰度均值数据,phy。图1|物种丰度及分类单元注释信息,spetax.csv。图5|按门汇总的各处理物种相对丰度数据,rel_phy。图4|绝对丰度堆叠面积图,abs_area.pdf。图6|相对丰度堆叠面积图,rel_area.pdf。原创 2023-02-23 18:54:55 · 1176 阅读 · 1 评论 -
R统计绘图 | 物种组成冲积图(绝对/相对丰度,ggalluvial)
数据使用的不同处理土壤样品的微生物组成数据,包含物种丰度,分类单元和样本分组数据。此数据为虚构,可用于练习,请不要作他用。图3|按门汇总的各处理物种丰度均值数据,phy。包在门水平绘制物种组成冲积图,可以绘制绝对丰度冲积图,也可以使用相对丰度绘制冲积图。图1|物种丰度及分类单元注释信息,spetax.csv。图5|按门汇总的各处理物种相对丰度数据,rel_phy。图4|绝对丰度冲积图,abs_allu.pdf。图6|相对丰度冲积图,rel_allu.pdf。图2|样本分组信息,group.csv。原创 2023-02-23 18:24:53 · 1711 阅读 · 0 评论 -
R统计绘图 | 物种组成堆叠柱形图(绝对/相对丰度)
数据使用的不同处理土壤样品的微生物组成数据,包含物种丰度,分类单元和样本分组数据。此数据为虚构,可用于练习,请不要作他用。图1|物种丰度及分类单元注释信息,spetax.csv。图2|样本分组信息,group.csv。原创 2023-02-23 18:12:32 · 5267 阅读 · 4 评论 -
R统计绘图-变量分组相关性网络图(igraph)
igraph绘制相关性网络图。原创 2022-09-11 02:28:49 · 6782 阅读 · 0 评论 -
R绘图-物种、环境因子相关性网络图(简单图、提取子图、修改图布局参数、物种-环境因子分别成环径向网络图)
https://doi.org/10.1016/j.soilbio.2020.107782有师妹想要绘制一张类似上图的环境因子-物种相关性网络图。这张图其实还挺好复现的,将环境因子与物种都作为变量一起计算相关性指数,然后绘图时更改网络图的布局参数,将环境因子与物种分内外环放置。下面使用虚构数据绘制一幅类似的图。一、 导入数据相关性系数的计算在前面很多文章R统计绘图-分子生态相关性网络分析都写过,这里不再赘述。这里直接导入相关性指数计算结果,r与p值矩阵。物种名中的空格、-等特殊字符需要注..原创 2022-04-27 22:47:42 · 11089 阅读 · 11 评论 -
机器学习-分类随机森林分析(randomForest模型构建、参数调优、特征变量筛选、模型评估和基础理论等)
此文主要涉及随机森林分类分析,主要包含以下几部分内容:1)随机森林基础知识2)randomForest()认识及构建分类判别模型;3)随机森林参数调优4)随机森林模型评估classification rate、Sensitivity和specificity和ROC curve/AUC value5)特征变量重要性筛选及绘图重要性指数排序、交叉验证及Boruta算法筛选一、 准备数据此处使用的包含......原创 2022-05-15 01:06:28 · 5892 阅读 · 2 评论 -
R统计绘图-多变量相关性散点矩阵图(GGally::ggpairs())
进行相关性分析之后,就要选择分析结果的展示形式。前面介绍过是用corrplot包绘制相关性热图展示结果(R统计绘图-corrplot绘制热图及颜色、字体等细节修改),这里介绍另一种展示形式,使用ggplot2绘图扩展包-GGally包的ggpairs()展示相关性分析结果,图中同时展示数据散点图和相关性结果。这在R统计绘图-One-Way MANOVA一文中有展示过。一、 数据准备# 1.1 设置工作路径setwd("D:\\EnvStat\\corrplot")# 1.2 加载R包原创 2022-04-27 23:06:19 · 2897 阅读 · 1 评论 -
R统计绘图-多变量单因素非参数差异检验及添加显著性标记图
一、 数据准备数据包括36个样本,4个处理,7个环境因子,研究目的是为了比较处理间每个环境因子是否存在差异。# 1.1 设置工作路径setwd("D:\\EnvStat\\stat")getwd()#获取工作路径# 1.2 导入数据env = read.csv("env.csv",header = TRUE,row.names = 1,stringsAsFactors = FALSE)dim(env)head(env) # 第一列为分组信息,2-8列为环境因子数据图1|环境原创 2022-04-27 22:11:35 · 1444 阅读 · 0 评论 -
R统计绘图-使用rgl或pca3D包绘制3DPCA图
虽然PCA和RDA分析及绘图都写过教程,但是对于结果的解释都没有写的很详细,刚好最近有人询问怎样使用FactoMineR factoextra包进行PCA分析。所以使用R统计绘图-环境因子相关性热图中的不同土壤环境因子数据进行PCA绘图和结果解读推文。一、 PCA分析过程1.1 数据准备# 1.1.1 设置工作路径setwd("D:\\EnvStat\\PCA\\3DPCA")getwd()#获取工作路径# 1.1.2 调用R包library(factoextra)library(原创 2022-04-27 21:31:38 · 974 阅读 · 0 评论 -
R统计绘图-PCA分析绘图及结果解读(误差线,多边形,双Y轴图、球形检验、KMO和变量筛选等)
虽然PCA和RDA分析及绘图都写过教程,但是对于结果的解释都没有写的很详细,刚好最近有人询问怎样使用FactoMineR factoextra包进行PCA分析。所以使用R统计绘图-环境因子相关性热图中的不同土壤环境因子数据进行PCA绘图和结果解读推文。一、 数据准备# 1.1 设置工作路径#knitr::opts_knit$set(root.dir="D:\\EnvStat\\PCA")# 使用Rmarkdown进行程序运行Sys.setlocale('LC_ALL','C') # Rmark原创 2021-12-14 18:47:59 · 4155 阅读 · 1 评论 -
R统计绘图-VPA(变差分解分析)
变差分解分析(Variance Partitioning Analysis)可用于确定指定环境因子对微生物(原生生物/植物/动物等等)群落结构变化的解释比例。要计算指定环境因子与群落结构的相关性,就需要约束非指定环境因子的同时,对指定环境因子做排序分析。其实就是相当于做partial排序分析。公众号文章《R统计-PCA/PCoA/db-RDA/NMDS/CA/CCA/DCA等排序分析教程》写过如何使用vegan包进行偏分析。本文记录一下使用vegan包进行VPA分析的两种方法。一、 数据准备# 1原创 2021-11-27 13:02:59 · 10563 阅读 · 1 评论 -
R统计绘图-分子生态相关性网络分析(拓扑属性计算,ggraph绘图)
一、 分子生态网络简介分子生态网络分析是一个极具前景的群落生态分析方法,它能够较为轻松的探究出不同环境中的不同生物特征(物种或基因等)间的相互作用关系或共存模式。通过确定整个网络中的具有高连接度的微生物特征或该特征在模块内所处的位置,可以得到整个网络中的关键物种或基因(hub nodes)以及一些较为重要的物种或基因。这一类微生物特征可能对于微生物群落的结构和功能有着一定的决定作用。网络分析方法已经被广泛的应用于各个环境中的微生物群落的研究,在探寻微生物群落的特有属性、结构、功能以及群落的复杂性和稳定性原创 2021-09-16 20:45:36 · 5505 阅读 · 0 评论 -
R统计绘图-One-Way MANOVA
存在两个及以上连续结果(或响应)变量的ANOVA被称为多变量方差分析(Multivariate Analysis of Variance,MANOVA)。例如,将小鼠分为处理A和处理B两组后,测量小鼠的长度和高度。此时小鼠的长度和高度就是结果变量,假设长度和高度都因为处理不同产生差异。此时可以使用MANOVA检测上述假设。MANOVA分析过程总结如下:1)将所有结果变量经过线性组合形成一个新的复合变量;2)比较新变量在分类变量中的均值。本文接下来描述在R中如何进行MANOVA。一、原创 2021-09-09 10:23:57 · 2781 阅读 · 1 评论 -
R统计绘图-corrplot绘制热图及颜色、字体等细节修改1
有师妹想要更改热图的颜色和字体,想着之前相关性绘图等推文只是使用corrplot默认的颜色绘图,为了帮师妹解惑,今天就写一篇,怎么设置热图颜色和字体等细节到推文。其实看一遍R语言实战|入门3:图形初阶,就可以基本了解R中图形细节的设置。本流程还是使用R统计绘图-环境因子相关性热图中的不同土壤环境因子数据进行相关性分析、绘制热图并进行图细节更改。流程开始按下图整理环境因子数据,行为样品名称,列为环境因子名称和分组信息,共有11个环境变量,3个分组信息。图1|环境因子及分组信息表,env.csv。..原创 2021-09-05 18:02:57 · 16993 阅读 · 5 评论 -
R统计绘图-corrplot热图绘制细节调整2(更改变量可视化顺序、非相关性热图绘制、添加矩形框等)
上一篇文章推送的是怎样调整corrplot热图的可视化参数,以修改字符和图例位置,数据可视化形式和字符小大和颜色等这篇是一个补充部分,记录怎样修改参数以变量排序方式和突出部分数据。本流程还是使用R统计绘图-环境因子相关性热图中的不同土壤环境因子数据进行相关性分析、绘制热图并进行图细节更改。流程开始按下图整理环境因子数据,行为样品名称,列为环境因子名称和分组信息,共有11个环境变量,3个分组信息。图1|环境因子及分组信息表,env.csv。1 设置工作路径并调用R包#设置工作路径#...原创 2021-09-05 18:30:30 · 11319 阅读 · 0 评论