可形变卷积的CUDA实现及编译

代码详见我上传的资料。

经过我的测试cuda10.2下

torch1.7和torch1.5都编译失败了

只有torch1.4 cuda10版本编译通过。

编译时记得把build文件删除,不然会影响本地环境的编译。

编译就运行 python setup.py develop即可。

实现yolov8加可形变卷积,可以按照以下步骤进行操作: 1. 首先,运行以下命令来查看网络结构: ``` python models/yolo.py --cfg models/yolov5s.yaml ``` 2. 接下来,找到`yolo.py`文件,并修改其中的`parse_model`函数。在该函数中,将以下代码添加到`if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, CoordAtt, DCNConv):`这一行中: ``` DCNConv ``` 3. 保存并关闭`yolo.py`文件,并重新运行模型。 通过以上步骤,你可以将可形变卷积(DCNConv)添加到yolov8网络中。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [yolov5 加入可形变卷积](https://blog.csdn.net/shuaijieer/article/details/126249088)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [keras的API编写LeNet5网络来做mnist的分类,将谷歌训好的incep-V3迁移到花朵分类等.zip](https://download.csdn.net/download/qq_35831906/88225545)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值