F.conv2d的参数groups的作用

这篇博客深入探讨了PyTorch中的卷积操作,通过示例解释了`F.conv2d`函数的使用。输入input为[1,2,2,5],卷积核filters为[2,1,1,3],设置groups为2,这意味着卷积过程中input被分成两个部分,分别与kernel进行卷积,最后将结果concat在一起,形成[b,cout,h,w]的输出。文章强调了groups参数的影响以及卷积层在深度学习中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch.nn.functional as F
import torch
inputs = torch.arange(1, 21).reshape(1, 2, 2, 5)
filters = torch.arange(1, 7).reshape(2, 1, 1, 3)
print(inputs)
print(filters)
res = F.conv2d(input=inputs, weight=filters, stride=(1, 1), groups=2)
print(res)

输出

这说明输入的input为[1,2,2,5],kernel为[2,1,1,3],那么groups=2,此时kernel的第一个shape参数必须为groups的倍数,否则报错。这说明实际上是把input 变为group个[b,c/group,h,w]分别与kernel[cout/group,c/group,k1,k2]进行卷积后这group个结果进行concat的到最后【b,cout,h,w】的输出

 

### PyTorch `F.conv2d` 函数参数详解及使用方法 #### 参数说明 在 PyTorch 的 `torch.nn.functional` 模块中,`F.conv2d()` 是一种用于执行二维卷积操作的函数。它允许用户显式地传递权重和偏置作为输入的一部分,这与 `nn.Conv2d` 不同,后者会自动初始化这些参数。 以下是 `F.conv2d` 的主要参数及其作用: 1. **input**: 输入张量,形状通常为 `(N, C_in, H_in, W_in)`,表示批量大小、输入通道数以及输入的高度和宽度[^3]。 2. **weight**: 卷积核的权重张量,其形状应为 `(C_out, C_in/groups, kernel_height, kernel_width)`,其中 `C_out` 表示输出通道数,`groups` 控制分组卷积的行为[^3]。 3. **bias (可选)**: 偏置向量,默认为 `None`。如果提供,则它的长度应该等于 `C_out`[^3]。 4. **stride**: 步幅,默认值为 1。可以是一个整数值或者一个元组 `(sH, sW)` 来分别指定高度方向和宽度方向上的步幅[^3]。 5. **padding**: 零填充的数量,默认值为 0。同样支持单个整数或两个整数组成的元组形式`(padH, padW)`[^3]。 6. **dilation**: 膨胀率,默认值为 1。控制内核点之间的间距,也接受单一整数或二元组的形式[^3]。 7. **groups**: 将输入分成多组进行独立计算,默认值为 1。当设置为 `in_channels` 和 `out_channels` 相等时实现深度可分离卷积[^3]。 8. **padding_mode**: 默认为 `'zeros'`,即零填充模式。其他选项包括反射填充 (`reflect`) 或者复制边缘像素(`replicate`)[^3]。 #### 使用示例 下面展示如何利用 `F.conv2d` 执行基本的二维卷积运算: ```python import torch import torch.nn.functional as F # 定义输入数据 batch_size = 1 channels_in = 3 height = 32 width = 32 input_tensor = torch.randn(batch_size, channels_in, height, width) # 定义卷积核权重量化矩阵 output_channels = 6 kernel_size = 3 weights = torch.randn(output_channels, channels_in, kernel_size, kernel_size) # 可选:定义偏差项 biases = torch.randn(output_channels) # 应用 conv2d 函数 result = F.conv2d(input=input_tensor, weight=weights, bias=biases, stride=1, padding=1, dilation=1, groups=1) print(result.shape) # 输出尺寸取决于具体配置 ``` 上述代码片段展示了通过自定义权重和偏差应用标准二维卷积的过程[^4]。 --- #### 注意事项 尽管 `F.conv2d` 提供了更大的灵活性,但它并不像 `nn.Conv2d` 那样方便快捷。对于大多数情况来说,推荐优先考虑使用封装好的类接口 `nn.Conv2d`,除非确实需要动态调整某些超参数或探索更复杂的模型结构[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值