若尔当标准形学习

建议先学 λ \lambda λ矩阵https://blog.csdn.net/qq_39942341/article/details/120469233?spm=1001.2014.3001.5502

尽管亏损矩阵(找不到 n n n个线性无关的特征向量的矩阵)不能相似对角化,但是他们可以相似对角化于一个若尔当标准形

若尔当块

n n n阶若尔当块
J i = ( λ i 1 λ i 1 ⋱ ⋱ λ i 1 λ i ) n × n J_i= \begin{pmatrix} \lambda_i&1&&&\\ &\lambda_i&1&&\\ &&\ddots&\ddots&\\ &&&\lambda_i&1\\ &&&&\lambda_i\\ \end{pmatrix}_{n\times n} Ji=λi1λi1λi1λin×n

若尔当标准形

J = ( J 1 J 2 ⋱ J t ) n × n J= \begin{pmatrix} J_1&&&\\ &J_2&&\\ &&\ddots&\\ &&&J_t\\ \end{pmatrix}_{n\times n} J=J1J2Jtn×n
其中 J i J_i Ji为若尔当块,当 ∑ i = 1 t m i = n \sum_{i=1}^{t}m_i=n i=1tmi=n时,称为 n n n阶若尔当标准形,记为 J J J

λ \lambda λ矩阵次数

m × n m\times n m×n λ \lambda λ矩阵
A ( λ ) = ( a 11 ( λ ) ⋯ a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) ⋯ a m n ( λ ) ) A(\lambda)= \begin{pmatrix} a_{11}(\lambda)&\cdots&a_{1n}(\lambda)\\ \vdots& &\vdots\\ a_{m1}(\lambda)&\cdots&a_{mn}(\lambda)\\ \end{pmatrix} A(λ)=a11(λ)am1(λ)a1n(λ)amn(λ)
次数最高的多项式的次数 L L L A ( λ ) A(\lambda) A(λ)的次,即
L = max ⁡ 1 ≤ i ≤ m 1 ≤ j ≤ n d e g   a i j ( λ ) L= \max\limits_{1\le i \le m \atop 1\le j \le n} deg\ a_{ij}(\lambda) L=1jn1immaxdeg aij(λ)
所以
a i j ( λ ) = a i j ( 0 ) λ 0 + a i j ( 1 ) λ 1 + ⋯ + a i j ( L ) λ L a_ij(\lambda)=a_{ij}^{(0)}\lambda^0+a_{ij}^{(1)}\lambda^1+\cdots +a_{ij}^{(L)}\lambda^L aij(λ)=aij(0)λ0+aij(1)λ1++aij(L)λL
其中 i = 1 , 2 , ⋯   , m , j = 1 , 2 , ⋯   , n i=1,2,\cdots,m,j=1,2,\cdots,n i=1,2,,m,j=1,2,,n

A r = ( a 11 ( r ) ⋯ a 1 n ( r ) ⋮ ⋮ a m 1 ( r ) ⋯ a m n ( r ) ) ( r = 1 , 2 , ⋯   , L ) A_r= \begin{pmatrix} a_{11}^{(r)}&\cdots&a_{1n}^{(r)}\\ \vdots& &\vdots\\ a_{m1}^{(r)}&\cdots&a_{mn}^{(r)}\\ \end{pmatrix}(r=1,2,\cdots,L) Ar=a11(r)am1(r)a1n(r)amn(r)(r=1,2,,L)
A L A_L AL不是零矩阵,于是 A ( λ ) A(\lambda) A(λ)可以表示为
A ( λ ) = A 0 + A 1 λ + ⋯ + A L λ L A(\lambda)=A_0+A_1\lambda+\cdots+A_L \lambda^L A(λ)=A0+A1λ++ALλL
称为 A ( λ ) A(\lambda) A(λ)多项式表示, A L A_L AL称为 A ( λ ) A(\lambda) A(λ)首项系数
如果 A L = ± I n A_L=\pm I_n AL=±In,则称 A ( λ ) A(\lambda) A(λ)首项系数为 1 1 1

引理

A ( λ ) A(\lambda) A(λ) B ( λ ) B(\lambda) B(λ)分别为 L L L次和 m m m次的 n n n λ \lambda λ矩阵,即
A ( λ ) = ∑ i = 0 L A i λ i , B ( λ ) = ∑ i = 0 m B i λ i A(\lambda)=\sum_{i=0}^{L}A_i\lambda^i,B(\lambda)=\sum_{i=0}^{m}B_i\lambda^i A(λ)=i=0LAiλi,B(λ)=i=0mBiλi
B ( λ ) B(\lambda) B(λ)的首项系数 B m B_m Bm可逆,即 d e t B m ≠ 0 det B_m\neq 0 detBm=0,则
存在 λ \lambda λ矩阵 Q ( λ ) , Q ′ ( λ ) Q(\lambda),Q'(\lambda) Q(λ),Q(λ) R ( λ ) , R ′ ( λ ) R(\lambda),R'(\lambda) R(λ),R(λ)使得
A ( λ ) = Q ( λ ) B ( λ ) + R ( λ ) A(\lambda)=Q(\lambda)B(\lambda)+R(\lambda) A(λ)=Q(λ)B(λ)+R(λ)
或者
A ( λ ) = B ( λ ) Q ′ ( λ ) + R ′ ( λ ) A(\lambda)=B(\lambda)Q'(\lambda)+R'(\lambda) A(λ)=B(λ)Q(λ)+R(λ)
其中 R ( λ ) ≡ 0 , R ′ ( λ ) ≡ 0 R(\lambda)\equiv 0,R'(\lambda)\equiv 0 R(λ)0,R(λ)0或者 d e g R ( λ ) < m , d e g R ′ ( λ ) < m degR(\lambda)<m,degR'(\lambda)<m degR(λ)<m,degR(λ)<m

证明:
L < m L<m L<m Q ( λ ) = 0 , R ( λ ) = A ( λ ) Q(\lambda)=0,R(\lambda)=A(\lambda) Q(λ)=0,R(λ)=A(λ),成立
L ≥ m L\ge m Lm
B m − 1 λ − m B ( λ ) = I + λ − 1 B m − 1 B m − 1 + λ − 2 B m − 1 B m − 2 + ⋯ + λ − m + 1 B m − 1 B 1 + λ − m B m − 1 B 0 \begin{aligned} B_m^{-1}\lambda^{-m}B(\lambda)&=I+\lambda^{-1}B_{m}^{-1}B_{m-1}+\lambda^{-2}B_m^{-1}B_{m-2}+\cdots +\\ &\quad \lambda^{-m+1}B_m^{-1}B_1+\lambda^{-m}B_m^{-1}B_0 \end{aligned} Bm1λmB(λ)=I+λ1Bm1Bm1+λ2Bm1Bm2++λm+1Bm1B1+λmBm1B0
所以
λ L I = B m − 1 λ L − m B ( λ ) − λ L − 1 B m − 1 B m − 1 − λ L − 2 B m − 1 B m − 2 − ⋯ − λ L − m + 1 B m − 1 B 1 − λ L − m B m − 1 B 0 \begin{aligned} \lambda^LI&=B_m^{-1}\lambda^{L-m}B(\lambda)-\lambda^{L-1}B_{m}^{-1}B_{m-1}-\lambda^{L-2}B_m^{-1}B_{m-2}-\cdots -\\ &\quad \lambda^{L-m+1}B_m^{-1}B_1-\lambda^{L-m}B_m^{-1}B_0 \end{aligned} λLI=Bm1λLmB(λ)λL1Bm1Bm1λL2Bm1Bm2λLm+1Bm1B1λLmBm1B0
于是
A ( λ ) = A L λ L + A L − 1 λ L − 1 + ⋯ + A 1 λ + A 0 = A L ( B m − 1 λ L − m B ( λ ) − λ L − 1 B m − 1 B m − 1 − λ L − 2 B m − 1 B m − 2 − ⋯ − λ L − m + 1 B m − 1 B 1 − λ L − m B m − 1 B 0 ) + A L − 1 λ L − 1 + ⋯ + A 1 λ + A 0 = A L B m − 1 λ L − m B ( λ ) + A ( 1 ) ( λ ) \begin{aligned} A(\lambda)&=A_L \lambda^L+A_{L-1}\lambda^{L-1}+\cdots+A_1\lambda+A_0\\ &=A_L(B_m^{-1}\lambda^{L-m}B(\lambda)-\lambda^{L-1}B_{m}^{-1}B_{m-1}-\lambda^{L-2}B_m^{-1}B_{m-2}-\cdots -\\ &\quad \lambda^{L-m+1}B_m^{-1}B_1-\lambda^{L-m}B_m^{-1}B_0)+A_{L-1}\lambda^{L-1}+\cdots+A_1\lambda+A_0\\ &=A_LB_m^{-1}\lambda^{L-m}B(\lambda)+A^{(1)}(\lambda) \end{aligned} A(λ)=ALλL+AL1λL1++A1λ+A0=AL(Bm1λLmB(λ)λL1Bm1Bm1λL2Bm1Bm2λLm+1Bm1B1λLmBm1B0)+AL1λL1++A1λ+A0=ALBm1λLmB(λ)+A(1)(λ)
其中 A ( 1 ) ( λ ) A^{(1)}(\lambda) A(1)(λ)的次数 L 1 ≤ L − 1 L_1\le L-1 L1L1,且
A ( 1 ) ( λ ) = A L 1 ( 1 ) λ L 1 + ⋯ + A 1 ( 1 ) λ 1 + A 0 ( 1 ) A^{(1)}(\lambda)=A_{L_1}^{(1)}\lambda^{L_1}+\cdots+A_{1}^{(1)}\lambda^{1}+A_{0}^{(1)} A(1)(λ)=AL1(1)λL1++A1(1)λ1+A0(1)
其中 A L 1 ( 1 ) ≠ 0 A_{L_1}^{(1)}\neq 0 AL1(1)=0, L 1 < L L_1<L L1<L,若 L 1 > m L_1 >m L1>m,类似上面的步骤可得
A ( 2 ) ( λ ) = A L 2 ( 2 ) λ L 1 + ⋯ + A 1 ( 2 ) λ 1 + A 0 ( 2 ) A^{(2)}(\lambda)=A_{L_2}^{(2)}\lambda^{L_1}+\cdots+A_{1}^{(2)}\lambda^{1}+A_{0}^{(2)} A(2)(λ)=AL2(2)λL1++A1(2)λ1+A0(2)
其中 A ( 2 ) ( λ ) A^{(2)}(\lambda) A(2)(λ)的次数 L 2 ≤ L 1 L_2\le L_1 L2L1
继续进行下去,可得到一组 λ \lambda λ矩阵
A ( λ ) , A ( 1 ) ( λ ) , ⋯   , A ( r ) ( λ ) A(\lambda),A^{(1)}(\lambda),\cdots,A^{(r)}(\lambda) A(λ),A(1)(λ),,A(r)(λ)
他们的次数越来越低,所以 A ( r ) ( λ ) A^{(r)}(\lambda) A(r)(λ)的次数 L r < m L_r<m Lr<m,而 L r − 1 ≥ m L_{r-1}\ge m Lr1m
若记 A ( λ ) = A ( 0 ) ( λ ) A(\lambda)=A^{(0)}(\lambda) A(λ)=A(0)(λ),则
A ( i − 1 ) ( λ ) = A L 1 ( 1 ) B m − 1 λ L i − 1 − m B ( λ ) + A ( r ) ( λ ) ( i = 1 , 2 , ⋯   , r ) A^{(i-1)}(\lambda)=A_{L_1}^{(1)}B_m^{-1}\lambda^{L_{i-1}-m}B(\lambda)+A^{(r)}(\lambda)(i=1,2,\cdots,r) A(i1)(λ)=AL1(1)Bm1λLi1mB(λ)+A(r)(λ)(i=1,2,,r)
最后
A ( λ ) = ( A L B m − 1 λ L − m + A L 1 ( 1 ) B m − 1 λ L 1 − m + ⋯ + A L r − 1 ( r − 1 ) B m − 1 λ L r − 1 − m ) B ( λ ) + A ( r ) ( λ ) = Q ( λ ) B ( λ ) + R ( λ ) \begin{aligned} &\quad A(\lambda)\\ &=(A_{L} B_m^{-1}\lambda^{L-m}+A_{L_1}^{(1)} B_m^{-1}\lambda^{L_{1}-m}+\cdots +A_{L_{r-1}}^{(r-1)} B_m^{-1}\lambda^{L_{r-1}-m})B(\lambda)+A^{(r)}(\lambda)\\ &=Q(\lambda)B(\lambda)+R(\lambda) \end{aligned} A(λ)=(ALBm1λLm+AL1(1)Bm1λL1m++ALr1(r1)Bm1λLr1m)B(λ)+A(r)(λ)=Q(λ)B(λ)+R(λ)

相似充要条件是对应特征矩阵相抵

矩阵 A ∼ B A\sim B AB的充要条件为他们对应的特征矩阵 λ I − A ≃ λ I − B \lambda I-A \simeq \lambda I-B λIAλIB

证明:
必要性:
A ∼ B A\sim B AB则存在满秩的矩阵 C C C,使得
C − 1 A C = B C^{-1}AC=B C1AC=B
λ I − B = λ C − 1 C − C − 1 A C = C − 1 ( λ I − A ) C \lambda I-B=\lambda C^{-1}C-C^{-1}AC=C^{-1}(\lambda I-A)C λIB=λC1CC1AC=C1(λIA)C
所以 λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB相似,也相抵

充分性:
λ I − A ≃ λ I − B \lambda I-A \simeq \lambda I-B λIAλIB,存在可逆矩阵 U ( λ ) , V ( λ ) U(\lambda),V(\lambda) U(λ),V(λ),使得
λ I − A = U ( λ ) ( λ I − B ) V ( λ ) \lambda I-A = U(\lambda)(\lambda I -B)V(\lambda) λIA=U(λ)(λIB)V(λ)
或者
U − 1 ( λ ) ( λ I − A ) = ( λ I − B ) V ( λ ) U^{-1}(\lambda)(\lambda I-A) = (\lambda I -B)V(\lambda) U1(λ)(λIA)=(λIB)V(λ)
注意这里 A , B A,B A,B是数字矩阵
所以 λ I − A , λ I − B \lambda I-A,\lambda I-B λIA,λIB都是一次的 λ \lambda λ矩阵,首项系数为1
根据刚才的引理
U ( λ ) = ( λ I − A ) Q ( λ ) + U 0 U(\lambda)=(\lambda I-A)Q(\lambda)+U_0 U(λ)=(λIA)Q(λ)+U0
V ( λ ) = R ( λ ) ( λ I − A ) + V 0 V(\lambda)=R(\lambda)(\lambda I -A)+V_0 V(λ)=R(λ)(λIA)+V0
因为 λ I − A , λ I − B \lambda I-A,\lambda I-B λIA,λIB都是一次的 λ \lambda λ矩阵,所以
U 0 , V 0 U_0,V_0 U0,V0都是数字矩阵
U − 1 ( λ ) ( λ I − A ) = ( λ I − B ) V ( λ ) U − 1 ( λ ) ( λ I − A ) = ( λ I − B ) ( R ( λ ) ( λ I − A ) + V 0 ) U − 1 ( λ ) ( λ I − A ) = ( λ I − B ) R ( λ ) ( λ I − A ) + ( λ I − B ) V 0 ( U − 1 ( λ ) − ( λ I − B ) R ( λ ) ) ( λ I − A ) = ( λ I − B ) V 0 \begin{aligned} U^{-1}(\lambda)(\lambda I-A) &= (\lambda I -B)V(\lambda)\\ U^{-1}(\lambda)(\lambda I-A) &= (\lambda I -B)(R(\lambda)(\lambda I -A)+V_0)\\ U^{-1}(\lambda)(\lambda I-A) &= (\lambda I -B)R(\lambda)(\lambda I -A)+(\lambda I -B)V_0\\ (U^{-1}(\lambda)-(\lambda I -B)R(\lambda))(\lambda I-A) &= (\lambda I -B)V_0\\ \end{aligned} U1(λ)(λIA)U1(λ)(λIA)U1(λ)(λIA)(U1(λ)(λIB)R(λ))(λIA)=(λIB)V(λ)=(λIB)(R(λ)(λIA)+V0)=(λIB)R(λ)(λIA)+(λIB)V0=(λIB)V0
( λ I − B ) V 0 (\lambda I -B)V_0 (λIB)V0是一个1次的 λ \lambda λ矩阵
所以左边也应该是
所以 C = U − 1 ( λ ) − ( λ I − B ) R ( λ ) C=U^{-1}(\lambda)-(\lambda I -B)R(\lambda) C=U1(λ)(λIB)R(λ)为一个数字矩阵
C ( λ I − A ) = ( λ I − B ) V 0 C(\lambda I-A)=(\lambda I-B)V_0 C(λIA)=(λIB)V0

现在试着证明 C = U 0 − 1 C=U_0^{-1} C=U01
C = U − 1 ( λ ) − ( λ I − B ) R ( λ ) U ( λ ) C = I − U ( λ ) ( λ I − B ) R ( λ ) I = U ( λ ) C + U ( λ ) ( λ I − B ) R ( λ ) I = U ( λ ) C + U ( λ ) U − 1 ( λ ) ( λ I − A ) V − 1 ( λ ) R ( λ ) I = ( ( λ I − A ) Q ( λ ) + U 0 ) C + ( λ I − A ) V − 1 ( λ ) R ( λ ) I = U 0 C + ( λ I − A ) ( Q ( λ ) + V − 1 ( λ ) R ( λ ) ) \begin{aligned} C&=U^{-1}(\lambda)-(\lambda I -B)R(\lambda)\\ U(\lambda)C&=I-U(\lambda)(\lambda I -B)R(\lambda)\\ I&=U(\lambda)C+U(\lambda)(\lambda I -B)R(\lambda)\\ I&=U(\lambda)C+U(\lambda)U^{-1}(\lambda)(\lambda I-A)V^{-1}(\lambda)R(\lambda)\\ I&=((\lambda I-A)Q(\lambda)+U_0)C+(\lambda I-A)V^{-1}(\lambda)R(\lambda)\\ I&=U_0 C+(\lambda I-A)(Q(\lambda)+V^{-1}(\lambda)R(\lambda)) \end{aligned} CU(λ)CIIII=U1(λ)(λIB)R(λ)=IU(λ)(λIB)R(λ)=U(λ)C+U(λ)(λIB)R(λ)=U(λ)C+U(λ)U1(λ)(λIA)V1(λ)R(λ)=((λIA)Q(λ)+U0)C+(λIA)V1(λ)R(λ)=U0C+(λIA)(Q(λ)+V1(λ)R(λ))
比较次数得
I = U 0 C I=U_0 C I=U0C
C C C可逆, C = U 0 − 1 C=U_0^{-1} C=U01
C ( λ I − A ) = ( λ I − B ) V 0 U 0 − 1 ( λ I − A ) = ( λ I − B ) V 0 λ I − A = U 0 ( λ I − B ) V 0 λ I − A = λ U 0 V 0 − U 0 B V 0 \begin{aligned} C(\lambda I-A)&=(\lambda I-B)V_0\\ U_0^{-1}(\lambda I-A)&=(\lambda I-B)V_0\\ \lambda I-A&=U_0(\lambda I-B)V_0\\ \lambda I-A&=\lambda U_0 V_0 -U_0 BV_0\\ \end{aligned} C(λIA)U01(λIA)λIAλIA=(λIB)V0=(λIB)V0=U0(λIB)V0=λU0V0U0BV0
比较次数得
I = U 0 V 0 ⇒ V 0 = U 0 − 1 I=U_0 V_0\Rightarrow V_0=U_0^{-1} I=U0V0V0=U01
A = U 0 B V 0 ⇒ A = U 0 B U 0 − 1 A=U_0 BV_0\Rightarrow A=U_0 B U_0^{-1} A=U0BV0A=U0BU01
A ∼ B A\sim B AB
证毕

所以 A ∼ B A\sim B AB的问题可以转为他们的特征矩阵的相抵问题

n阶矩阵相似于若尔当矩阵

每个 n n n阶矩阵 A A A都与一个若尔当标准形 J J J相似,且这个若尔当标准形在不计其中的若尔当块的排列次序时,完全由矩阵 A A A唯一决定

证明:
n n n阶矩阵 A A A的特征矩阵 λ I − A \lambda I-A λIA的初等因子为
( λ − λ 1 ) m 1 , ( λ − λ 2 ) m 2 , ⋯   , ( λ − λ t ) m t (\lambda-\lambda_1)^{m_1},(\lambda-\lambda_2)^{m_2},\cdots,(\lambda-\lambda_t)^{m_t} (λλ1)m1,(λλ2)m2,,(λλt)mt
其中 λ 1 , λ 2 , ⋯   , λ t \lambda_1,\lambda_2,\cdots,\lambda_t λ1,λ2,,λt中可能有相同的值,指数 m 1 , ⋯   , m t m_1,\cdots,m_t m1,,mt中也可能有相同的值,但是总有
∑ i = 1 t m i = n \sum_{i=1}^{t}m_i=n i=1tmi=n
(因为初等因子都是从不变因子中来的,初等因子相乘=不变因子相乘,不变因子相乘=n阶行列式因子,也就是特征多项式,特征多项式可以的指数加起来就是n)

m i m_i mi阶若尔当块 J i J_i Ji的特征矩阵 λ I − J i \lambda I-J_i λIJi的初等因子为 ( λ − λ i ) m i (\lambda-\lambda_i)^{m_i} (λλi)mi,换言之, λ I − A \lambda I-A λIA的每一个初等因子 ( λ − λ i ) m i (\lambda-\lambda_i)^{m_i} (λλi)mi对应一个若尔当块 J i J_i Ji,其阶数为 m i m_i mi,那么,这些若尔当块构成一个若尔当标准型 J J J,而 J J J的特征矩阵 λ I − J \lambda I-J λIJ的初等因子是把各个若尔当块的初等因子合在一起构成的,即 λ I − J \lambda I-J λIJ的全部初等因子也为
( λ − λ 1 ) m 1 , ( λ − λ 2 ) m 2 , ⋯   , ( λ − λ t ) m t (\lambda-\lambda_1)^{m_1},(\lambda-\lambda_2)^{m_2},\cdots,(\lambda-\lambda_t)^{m_t} (λλ1)m1,(λλ2)m2,,(λλt)mt
也就是说 λ I − A \lambda I-A λIA λ I − J \lambda I-J λIJ有相同的初等因子,秩也想等,于是
λ I − A ≃ λ I − J \lambda I-A \simeq \lambda I-J λIAλIJ
再根据刚刚的定理
A ∼ J A\sim J AJ

如果还有若尔当标准形 J ′ J' J,使得 J ′ ∼ A J' \sim A JA,则也具有相同的初等因子,因此在不计若尔当块的排序顺序时,是唯一的

复数域再说吧

推论

矩阵 A A A可以相似对角化的充要条件是 A A A的初等因子全部为一次式

利用初等因子求若尔当标准形

求若尔当标准形

第一步:
找出 n n n阶方阵 A = ( a i j ) A=(a_{ij}) A=(aij)的特征矩阵 λ I − A \lambda I-A λIA的初等因子:
( λ − λ 1 ) m 1 , ( λ − λ 2 ) m 2 , ⋯   , ( λ − λ t ) m t (\lambda-\lambda_1)^{m_1},(\lambda-\lambda_2)^{m_2},\cdots,(\lambda-\lambda_t)^{m_t} (λλ1)m1,(λλ2)m2,,(λλt)mt
第二步:
写出初等因子 ( λ − λ i ) m i ( i = 1 , 2 , ⋯   , t ) (\lambda-\lambda_i)^{m_i}(i=1,2,\cdots,t) (λλi)mi(i=1,2,,t)对应的若尔当块

J i = ( λ i 1 λ i 1 ⋱ ⋱ λ i 1 λ i ) m i × m i J_i= \begin{pmatrix} \lambda_i&1&&&\\ &\lambda_i&1&&\\ &&\ddots&\ddots&\\ &&&\lambda_i&1\\ &&&&\lambda_i\\ \end{pmatrix}_{m_i\times m_i} Ji=λi1λi1λi1λimi×mi
第三步:
写出这些块构成的若尔当标准形
J = ( J 1 J 2 ⋱ J t ) n × n J= \begin{pmatrix} J_1&&&\\ &J_2&&\\ &&\ddots&\\ &&&J_t\\ \end{pmatrix}_{n\times n} J=J1J2Jtn×n

求变化矩阵

C − 1 A C = J C^{-1}AC=J C1AC=J
A C = J C AC=JC AC=JC
C = ( x 1 , x 2 , ⋯   , x n ) C=(x_1,x_2,\cdots,x_n) C=(x1,x2,,xn)
两边对照一下,列出方程组,即可求出 C C C

λ 1 \lambda_1 λ1 A A A k k k重特征值,则
{ ( λ 1 I − A ) x 1 = 0 ( λ 1 I − A ) x i = − x i − 1 ( i = 2 , 3 , ⋯   , k ) \begin{cases} (\lambda_1 I -A)x_1=0\\ (\lambda_1 I -A)x_i=-x_{i-1}(i=2,3,\cdots,k) \end{cases} {(λ1IA)x1=0(λ1IA)xi=xi1(i=2,3,,k)
这样得到的 x 1 , x 2 , ⋯   , x k x_1,x_2,\cdots,x_k x1,x2,,xk线性无关
(证明不会)
x 2 , ⋯   , x k x_2,\cdots,x_k x2,,xk称为广义特征向量

凯莱-哈密顿定理与最小多项式

凯莱-哈密顿定理

凯莱-哈密顿(Cayley-Hamilton)定理:
A A A n n n阶方阵, f ( λ ) f(\lambda) f(λ) A A A的特征多项式,则 f ( A ) = 0 f(A)=0 f(A)=0
证明:
考虑特征矩阵的伴随矩阵,因为伴随矩阵每个元素都是 n − 1 n-1 n1阶行列式,所以 λ \lambda λ的次数不会超过 n − 1 n-1 n1,可以表示为
( λ I − A ) ∗ = C 1 λ n − 1 + C 2 λ n − 2 + ⋯ + C n − 1 λ + C n (\lambda I-A)^{*}=C_1 \lambda^{n-1}+C_2 \lambda^{n-2}+ \cdots+ C_{n-1}\lambda+C_n (λIA)=C1λn1+C2λn2++Cn1λ+Cn
其中 C i ( i = 1 , 2 , ⋯   , n ) C_i(i=1,2,\cdots,n) Ci(i=1,2,,n)都是 n n n阶数字矩阵
( λ I − A ) ( λ I − A ) ∗ = f ( λ ) I ( λ I − A ) ( C 1 λ n − 1 + ⋯ + C n ) = I λ n + a 1 I λ n − 1 + ⋯ a n I \begin{aligned} (\lambda I-A)(\lambda I-A)^{*} &=f(\lambda) I\\ (\lambda I-A)(C_1 \lambda^{n-1}+\cdots + C_n)&=I \lambda^{n}+a_1 I \lambda^{n-1}+\cdots a_n I \end{aligned} (λIA)(λIA)(λIA)(C1λn1++Cn)=f(λ)I=Iλn+a1Iλn1+anI
比较系数得
C 1 = I C 2 − A C 1 = a 1 I C 3 − A C 2 = a 2 I ⋯ C n − A C n − 1 = a n − 1 I − A C n = a n I C_1= I\\ C_2-AC_1=a_1 I\\ C_3-AC_2=a_2 I\\ \cdots\\ C_n -A C_{n-1}=a_{n-1} I\\ -AC_n=a_n I C1=IC2AC1=a1IC3AC2=a2ICnACn1=an1IACn=anI
A n C 1 + A n − 1 ( C 2 − A C 1 ) + ⋯ + A ( C n − A C n − 1 ) − A C n = 0 A n I + a 1 A n − 1 + ⋯ a n − 1 A + a n I = f ( A ) \begin{aligned} A^n C_1+A^{n-1}(C_2-AC_1)+\cdots+A(C_n-AC_{n-1})-AC_n&=0\\ A^n I+a_1A^{n-1}+\cdots a_{n-1} A+a_n I &=f(A) \end{aligned} AnC1+An1(C2AC1)++A(CnACn1)ACnAnI+a1An1+an1A+anI=0=f(A)
所以 f ( A ) = 0 f(A)=0 f(A)=0

化零多项式

A A A n n n阶矩阵,如果存在多项式 ϕ ( λ ) = 0 \phi(\lambda)=0 ϕ(λ)=0,则称 ϕ ( λ ) \phi(\lambda) ϕ(λ) A A A的化零多项式

(化零多项式不一定就是特征多项式)

最小多项式

n n n阶方阵 A A A的所有化零多项式中,次数最低且首项系数为1的多项式称为 A A A的最小多项式,记为 m ( λ ) m(\lambda) m(λ)

定理1

多项式 ϕ ( λ ) \phi(\lambda) ϕ(λ)是矩阵 A A A的化零多项式的充要条件是 m ( λ ) ∣ ϕ ( λ ) m(\lambda) \mid \phi(\lambda) m(λ)ϕ(λ)

证明:
ϕ ( λ ) \phi(\lambda) ϕ(λ) A A A的化零多项式,其次数自然不必 m ( λ ) m(\lambda) m(λ)的次数低
ϕ ( λ ) = q ( λ ) m ( λ ) + r ( λ ) \phi(\lambda)=q(\lambda)m(\lambda)+r(\lambda) ϕ(λ)=q(λ)m(λ)+r(λ)
其中 r ( λ ) ≡ 0 r(\lambda)\equiv 0 r(λ)0或者 r ( λ ) r(\lambda) r(λ)的次数低于 m ( λ ) m(\lambda) m(λ)的次数
ϕ ( A ) = q ( A ) m ( A ) + r ( A ) \phi(A)=q(A)m(A)+r(A) ϕ(A)=q(A)m(A)+r(A)
ϕ ( A ) = 0 , m ( A ) = 0 ⇒ r ( A ) = 0 \phi(A)=0,m(A)=0\Rightarrow r(A)=0 ϕ(A)=0,m(A)=0r(A)=0
如果 r ( A ) ≢ 0 r(A)\not\equiv 0 r(A)0,则 r ( λ ) r(\lambda) r(λ)的次数比 m ( λ ) m(\lambda) m(λ)低,矛盾
所以 r ( A ) ≡ 0 ⇒ m ( λ ) ∣ ϕ ( λ ) r(A)\equiv 0\Rightarrow m(\lambda) \mid \phi(\lambda) r(A)0m(λ)ϕ(λ)

定理2

相似矩阵有相同的最小多项式

证明:
A ∼ B A\sim B AB,则存在可逆矩阵 P P P,使得
A = P − 1 B P A=P^{-1}BP A=P1BP
f ( B ) = 0 f(B)=0 f(B)=0
f ( A ) = f ( P − 1 B P ) = P − 1 f ( B ) P = 0 f(A)=f(P^{-1}BP)=P^{-1}f(B)P=0 f(A)=f(P1BP)=P1f(B)P=0

(注意,有相同的最小多项式也不一定相似)

定理3

n n n阶矩阵 A A A的最小多项式等于他的特征矩阵 λ I − A \lambda I-A λIA中的第 n n n个不变因子 d n ( λ ) d_n(\lambda) dn(λ),因而
f ( λ ) m ( λ ) = d e t ( λ I − A ) m ( λ ) = d e t ( λ I − A ) d n ( λ ) = D n − 1 ( λ ) \frac{f(\lambda)}{m(\lambda)}=\frac{det(\lambda I-A)}{m(\lambda)}=\frac{det(\lambda I-A)}{d_n(\lambda)}=D_{n-1}(\lambda) m(λ)f(λ)=m(λ)det(λIA)=dn(λ)det(λIA)=Dn1(λ)

证明:
再说

推论1

方阵 A A A的特征多项式的根必然是其最小多项式的根

证明:
λ I − A ≃ d i a g ( d 1 ( λ ) , d 2 ( λ ) , ⋯   , d n ( λ ) ) \lambda I-A \simeq diag(d_1(\lambda),d_2(\lambda),\cdots, d_n(\lambda)) λIAdiag(d1(λ),d2(λ),,dn(λ))
于是
f ( λ ) = d e t ( λ I − A ) = d 1 ( λ ) d 2 ( λ ) ⋯ d n ( λ ) f(\lambda)=det(\lambda I-A)=d_1(\lambda)d_2(\lambda)\cdots d_n(\lambda) f(λ)=det(λIA)=d1(λ)d2(λ)dn(λ)
f ( λ i ) = 0 ⇒ d j ( λ i ) = 0 ⇒ d n ( λ ) = 0 ⇒ m ( λ i ) = 0 f(\lambda_i)=0\Rightarrow d_j(\lambda_i)=0\Rightarrow d_n(\lambda)=0 \Rightarrow m(\lambda_i)=0 f(λi)=0dj(λi)=0dn(λ)=0m(λi)=0

推论2

若矩阵 A A A的特征值互异,则他们的最小多项式就是特征多项式

证明:
f ( λ ) = ( λ − λ 1 ) m 1 ⋯ ( λ − λ t ) m t f(\lambda)=(\lambda-\lambda_1)^{m_1}\cdots (\lambda-\lambda_t)^{m_t} f(λ)=(λλ1)m1(λλt)mt
其中 ∑ i = 1 t m i = n > 0 \sum_{i=1}^{t}m_i=n>0 i=1tmi=n>0,当 m i ≠ m j m_i\neq m_j mi=mj时, λ i ≠ λ j \lambda_i\neq \lambda_j λi=λj
m ( λ ) = ( λ − λ 1 ) l 1 ⋯ ( λ − λ t ) l t m(\lambda)=(\lambda-\lambda_1)^{l_1}\cdots (\lambda-\lambda_t)^{l_t} m(λ)=(λλ1)l1(λλt)lt
其中 1 ≤ l i ≤ m i ( i = 1 , 2 , ⋯   , t ) 1\le l_i \le m_i(i=1,2,\cdots,t) 1limi(i=1,2,,t)
m i = 1 ⇒ l i = 1 ⇒ f ( λ ) = m ( λ ) m_i=1\Rightarrow l_i=1\Rightarrow f(\lambda)=m(\lambda) mi=1li=1f(λ)=m(λ)

定理4

块对角矩阵 A = d i a g ( A 1 , ⋯   , A s ) A=diag(A_1,\cdots,A_s) A=diag(A1,,As)的最小多项式等于其诸对角块的最小多项式的最小公倍式

证明:
A i A_i Ai的最小多项式是 m i ( i = 1 , 2 , ⋯   , s ) m_i(i=1,2,\cdots,s) mi(i=1,2,,s),对于任意的多项式 ϕ ( λ ) \phi(\lambda) ϕ(λ)
ϕ ( A ) = d i a g ( ϕ ( A 1 ) , ⋯   , ϕ ( A s ) ) \phi(A)=diag(\phi(A_1),\cdots,\phi(A_s)) ϕ(A)=diag(ϕ(A1),,ϕ(As))
如果 ϕ ( λ ) \phi(\lambda) ϕ(λ) A A A的化零多项式,则 ϕ ( λ ) \phi(\lambda) ϕ(λ)必为 A i ( i = 1 , ⋯   , s ) A_i(i=1,\cdots,s) Ai(i=1,,s)的化零多项式,从而 m i ( λ ) ∣ ϕ ( λ ) ( i = 1 , ⋯   , s ) m_i(\lambda)\mid \phi(\lambda)(i=1,\cdots,s) mi(λ)ϕ(λ)(i=1,,s)
从而 ϕ ( λ ) \phi(\lambda) ϕ(λ) m 1 ( λ ) , ⋯   , m s ( λ ) m_1(\lambda),\cdots,m_s(\lambda) m1(λ),,ms(λ)的公倍式

反过来, ϕ ( λ ) \phi(\lambda) ϕ(λ) m 1 ( λ ) , ⋯   , m s ( λ ) m_1(\lambda),\cdots,m_s(\lambda) m1(λ),,ms(λ)的任一公倍式,则
ϕ ( A i ) = 0 ( i = 1 , ⋯   , s ) \phi(A_i)=0(i=1,\cdots ,s) ϕ(Ai)=0(i=1,,s),从而 ϕ ( A ) = 0 \phi(A)=0 ϕ(A)=0,因此 A A A的最小多项式为 m 1 ( λ ) , ⋯   , m s ( λ ) m_1(\lambda),\cdots,m_s(\lambda) m1(λ),,ms(λ)的公倍式中次数最低的

定理5

A ∈ C n × n A\in C^{n\times n} ACn×n,则 A A A的最小多项式为 A A A的第 n n n个不变因子 d n ( λ ) d_n(\lambda) dn(λ)

证明:
A ∼ J = d i a g ( J 1 , ⋯   , J s ) A\sim J=diag(J_1,\cdots,J_s) AJ=diag(J1,,Js),其中 J i J_i Ji为若尔当块
他们有相同的不变因子和最小多项式
所以 J J J的最小多项式为 J 1 , ⋯   , J s J_1,\cdots,J_s J1,,Js的最小多项式的最小公倍式
J i J_i Ji的最小多项式为 ( λ − λ i ) n i ( i = 1 , 2 , ⋯   , s ) (\lambda-\lambda_i)^{n_i}(i=1,2,\cdots,s) (λλi)ni(i=1,2,,s),
( λ − λ 1 ) n 1 , ⋯   , ( λ − λ s ) n s (\lambda-\lambda_1)^{n_1},\cdots,(\lambda-\lambda_s)^{n_s} (λλ1)n1,,(λλs)ns的最小公倍数是 J J J的第 n n n个不变因子 d n ( λ ) d_n(\lambda) dn(λ)
因此 A A A的最小多项式为 d n ( λ ) d_n(\lambda) dn(λ)

定理6

n n n阶矩阵 A A A相似于对角矩阵的充要条件是 A A A的最小多项式 m ( λ ) m(\lambda) m(λ)没有重零点

幂零矩阵的若尔当标准形

幂零矩阵

A A A为一个非零的 n n n幂零矩阵,即存在一个正整数 m m m使 A m = 0 A^m=0 Am=0,但是 A m − 1 ≠ 0 A^{m-1}\neq 0 Am1=0,称 m m m A A A幂零指标

引理

A A A为一个幂零矩阵 ⇔ \Leftrightarrow A A A的特征值全为0

幂零矩阵的若尔当标准形

由引理,幂零矩阵的若尔当标准型为
N = d i a g ( N 1 , N 2 , ⋯   , N s ) N=diag(N_1,N_2,\cdots,N_s) N=diag(N1,N2,,Ns)
N i = ( 0 1 0 1 ⋱ ⋱ ⋱ 1 0 ) n i × n i N_i= \begin{pmatrix} 0&1&&&\\ &0&1&&\\ &&\ddots &\ddots &\\ &&&\ddots&1\\ &&&&0\\ \end{pmatrix}_{n_i\times n_i} Ni=010110ni×ni

定理

n n n阶幂零矩阵 A A A的若尔当标准形如上,幂零指标为 m m m,则
(1) m = max ⁡ { n i ∣ 1 ≤ i ≤ s } m=\max \{n_i \mid 1\le i \le s\} m=max{ni1is}
(2) A A A的零度(即 A A A的零花空间的维数)等于 N N N中若尔当块的个数 s s s
(3)记 N N N k k k阶若尔当块的个数为 l k l_k lk, A k A^k Ak的零度为 η k , 1 ≤ k ≤ n \eta_k,1\le k\le n ηk,1kn,则
l 1 = 2 η 1 − η 2 = 2 s − η 2 l k = 2 η k − η k − 1 − η k + 1 , 2 ≤ k ≤ m l_1=2\eta_1-\eta_2=2s-\eta_2\\ l_k=2\eta_k-\eta_{k-1}-\eta_{k+1},2\le k\le m l1=2η1η2=2sη2lk=2ηkηk1ηk+1,2km

证明:
(1)
A ∼ N ⇒ A k = 0 ⇔ N k = 0 , k ∈ Z + A\sim N\Rightarrow A^k=0 \Leftrightarrow N^k=0,k\in Z_{+} ANAk=0Nk=0,kZ+
N k = d i a g ( N 1 k , N 2 k , ⋯   , N s k ) N^k=diag(N_1^k,N_2^k,\cdots,N_s^k) Nk=diag(N1k,N2k,,Nsk)
N i n i = 0 , N i n i − 1 ≠ 0 N_i^{n_i}=0,N_i^{n_i-1}\neq 0 Nini=0,Nini1=0 n i n_i ni N i N_i Ni的阶数),所以 N N N的幂零指标为 m ⇔ n i ≤ m , 1 ≤ i ≤ s m \Leftrightarrow n_i\le m,1\le i\le s mnim,1is且存在 i i i,使得 n i = m n_i=m ni=m
(2)
A A A的零度为 η 1 \eta_1 η1,则
η 1 = n − r ( A ) = n − r ( N ) = ∑ i = 1 s n i − ∑ i = 1 s ( n i − 1 ) = s \eta_1=n-r(A)=n-r(N)=\sum_{i=1}^{s}n_i-\sum_{i=1}^{s}(n_i-1)=s η1=nr(A)=nr(N)=i=1snii=1s(ni1)=s
(3)根据 A k A^k Ak的零度等于 N k N^k Nk的零度,等于 N i k N_i^k Nik的零度之和 ( i = 1 , 2 , ⋯   , s ) (i=1,2,\cdots,s) (i=1,2,,s)
所以
N i k 的零度 = { k , k ≤ n i ; n , k > n i N_i^k\text{的零度}=\begin{cases} k,k\le n_i;\\ n,k>n_i \end{cases} Nik的零度={k,kni;n,k>ni
于是
η 1 = A 的零度 = N 的零度 = ∑ i = 1 s ( N i 的零度 ) = ∑ i = 1 s 1 = s = ∑ k ≥ 1 l k \eta_1=A\text{的零度}=N\text{的零度}=\sum_{i=1}^{s}(N_i\text{的零度})=\sum_{i=1}^{s}1=s=\sum_{k\ge 1} l_k η1=A的零度=N的零度=i=1s(Ni的零度)=i=1s1=s=k1lk
η 2 = A 2 的零度 = N 2 的零度 = ∑ i = 1 s ( N i 2 的零度 ) = ∑ i , n i < 2 ( N i 2 的零度 ) + ∑ i , n i ≥ 2 ( N i 2 的零度 ) = l 1 + 2 ∑ k ≥ 2 l k \begin{aligned} \eta_2&=A^2\text{的零度}=N^2\text{的零度}=\sum_{i=1}^{s}(N_i^2\text{的零度})\\ &=\sum_{i,n_i<2}(N_i^2\text{的零度})+\sum_{i,n_i\ge 2}(N_i^2\text{的零度})=l_1+2\sum_{k\ge 2}l_k \end{aligned} η2=A2的零度=N2的零度=i=1s(Ni2的零度)=i,ni<2(Ni2的零度)+i,ni2(Ni2的零度)=l1+2k2lk
⋯ \cdots
η j = A j 的零度 = N j 的零度 = ∑ i = 1 s ( N j 2 的零度 ) = ∑ i , n i < j ( N i j 的零度 ) + ∑ i , n i ≥ j ( N i j 的零度 ) = ∑ k < j k l k + j ∑ k ≥ j l k \begin{aligned} \eta_j &=A^j\text{的零度}=N^j\text{的零度}=\sum_{i=1}^{s}(N_j^2\text{的零度})\\ &=\sum_{i,n_i<j}(N_i^j\text{的零度})+\sum_{i,n_i\ge j}(N_i^j\text{的零度})=\sum_{k<j}k l_k+j\sum_{k\ge j}l_k \end{aligned} ηj=Aj的零度=Nj的零度=i=1s(Nj2的零度)=i,ni<j(Nij的零度)+i,nij(Nij的零度)=k<jklk+jkjlk
于是
l 1 = 2 η 1 − η 2 = 2 s − η 2 l k = 2 η k − η k − 1 − η k + 1 , 2 ≤ k ≤ m l_1=2\eta_1-\eta_2=2s-\eta_2\\ l_k=2\eta_k-\eta_{k-1}-\eta_{k+1},2\le k\le m l1=2η1η2=2sη2lk=2ηkηk1ηk+1,2km

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值