高等代数(七)-线性变换08:若尔当 (Jordan) 标准形介绍

本文介绍了线性变换中的若尔当(Jordan)标准形,探讨了如何通过基变换将线性变换的矩阵转化为若尔当形矩阵。在复数域中,每个线性变换都能找到一组基,使得其在该基下的矩阵为若尔当形,这被称为若尔当标准形。若尔当块和若尔当形矩阵的概念被详细阐述,并给出了相关定理证明。
摘要由CSDN通过智能技术生成

§ 8 若尔当 (Jordan) 标准形介绍
同一个线性变换在不同基下的矩阵是相似的,我们期望通过基的变换使它的矩阵化为简单的形状.
对角矩阵具有简单形状,
从前面第五节的讨论已经知道,并不是每个线性变换都有一组基使它在这组基下矩阵为对角形.现在提出问题:一般线性变换通过选择基能将它的矩阵变为什么样的简单形状的矩阵.
我们将这种矩阵称为线性变换下矩阵的标准形.
这个问题也等价于:任一方阵经过相似变换能变成什么样的标准形.
这一节我们限制在复数域中讨论.
定义 9 形为
J ( λ 0 , k ) = ( λ 0 0 0 ⋯ 0 0 0 1 λ 0 0 ⋯ 0 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 λ 0 0 0 0 0 ⋯ 0 1 λ 0 ) k × k \boldsymbol{J}\left(\lambda_{0}, k\right)=\left(\begin{array}{ccccccc} \lambda_{0} & 0 & 0 & \cdots & 0 & 0 & 0 \\ 1 & \lambda_{0} & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & \lambda_{0} & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & \lambda_{0} \end{array}\right)_{k \times k} J(λ0,k)= λ01000λ0000000001000λ01000λ0 k×k
的矩阵称为若尔当块, 其中 λ 0 \lambda_{0} λ0 是复数.
由若干个若尔当块组成的准对角矩阵
A = ( J ( λ 1 , k 1 ) J ( λ 2 , k 2 ) ⋱ J ( λ 1 , k 1 ) ) A=\left(\begin{array}{llll} \boldsymbol{J}\left(\lambda_{1}, k_{1}\right) & & & \\ & \boldsymbol{J}\left(\lambda_{2}, k_{2}\right) & & \\ & & \ddots & \\ & & & \boldsymbol{J}\left(\lambda_{1}, k_{1}\right) \end{array}\right) A= J(λ1,k1)J(λ2,k2)J(λ1,k1)
称为若尔当形矩阵, 其中 λ 1 , λ 2 , ⋯   , λ \lambda_{1}, \lambda_{2}, \cdots, \lambda λ1,λ2,,λ,
为复数, 有一些可以相同.
J ( 1 , 3 ) = ( 1 0 0 1 1 0 0 1 1 ) , ( J ( 1 , 3 ) J ( 4 , 2 ) ) = ( 1 0 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值