二阶系统时域分析:二阶系统单位阶跃响应曲线

继上一篇博客 一阶系统时域分析,下面进行二阶系统时域分析,上篇链接:https://blog.csdn.net/qq_40035462/article/details/89350543

前言

在经典控制理论中,常用时域分析法、根轨迹法或频域分析法来分析线性控制系统的性能,不同的方法有不同的特点和适用范围,但是比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。

 由于二阶系统情况较复杂,此处只实现了二阶系统在欠阻尼、无阻尼和临界阻尼情况下的阶跃响应。

二阶系统数学模型

标准形式的二阶系统结构图(来自《自动控制原理》第六版–胡寿松)
图片来自教材
其中:
图片来自教材
欠阻尼时的单位阶跃响应表达式为(图片来自教材):
图片来自教材

二阶系统欠阻尼单位阶跃响应

响应曲线如图所示,图中的右方的zeta为阻尼比:
一共绘制了4条曲线,对应单位阶跃响应输入阻尼比为0(蓝色)、0.3(橙色)、0.7(绿色)、1(红色) 这四种情况,K为开环增益(图中均取值1),T为机电时间常数(取值1),Wn自然频率(取值1),图如下:
原创
当阻尼比为0.3,0.7时的动态性能指标(Tm,K,Wn均为1)如下:
在这里插入图片描述
由动态性能指标看出:阻尼比越小,上升时间越小,峰值时间越小,超调量越大,调节时间越大,与书本图形一致,书本图如下:
来自教材

  • 3
    点赞
  • 1
    评论
  • 27
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

嘟嘟太菜了

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值