相容/不相容非齐次线性方程组的最小二乘解与最佳最小二乘解

首先说明相容/不相容非齐次线性方程组的概念:

(1)线性方程组Ax=b有解的充要条件是rank(A,b)=rank(A),此时称Ax=b是相容非齐次线性方程组;

(2)对Ax=b,若rank(A,b)≠rank(A),即b∉R(A)时,方程组Ax=b无解,此时称Ax=b是不相容非齐次线性方程组。

下面正式开始。


问题:假设x1,x2,…,xn和y满足线性关系,其中x1,x2,…,xn是n个自变量,y是因变量,有y=a1x1+…+anxn,现在总共有s组观测值如下:
在这里插入图片描述
求a1,a2,…,an

求解过程如下

首先,可构建方程组如下:
在这里插入图片描述
上图是一个线性方程组,如果能求出解自然万事OK,但是极有可能是无解的。

在无解的情况下只能求近似解,要求近似解的误差最小,可以构建函数:
在这里插入图片描述
求图中函数的最小值即可。

常规做法是这样的:分别求偏导数并令其为0,即∂f/∂ai=0,其中i=1,2,…,n。最后便可以得到α12,…,αn

下面使用内积空间的投影理论解决不相容方程组Ax=b的解。

令s×n阶矩阵A为:
在这里插入图片描述
令A=[α12,…,αn],其中αi是A的第i个列向量,其中i=1,2,…,n,令向量b=[y1,y2,…,ys]T,x=[a1,a2,…,an]T,则有:Ax=b,即:
在这里插入图片描述
令W=span{α12,…,αn},αi∈Rs,其中i=1,2,…,n。则W是s维向量空间的一个线性子空间,b∈Rs。若向量b在子空间W内,则方程组有解,否则无解,即为如下情况:
在这里插入图片描述
设向量y=Ax,现在问题转换为求x使向量Ax与向量b之间的距离d(b,Ax)最小,易知在子空间W上的所有向量中,b在W上的投影与b之间的距离最小,于是,当y=Ax为b在W上的投影时的那个x,就是Ax=b的近似解。

由于y现在是b在W上的投影,因此有b-y⊥W,即b-y⊥span{α12,…,αn},于是有b-y⊥αi,其中i=1,2,…,n。

根据内积运算有:<αi,b-Ax>=0,于是<αi,b>=<αi,Ax>=<αi,a1α1+…+anαn>,因此<αi,b>=a1i1>+…+anin>,其中i=1,2,…,n。写成矩阵方程为:
在这里插入图片描述
即G(α12,…,αn)·x=G(α12,…,αn;b),其中G(α12,…,αn)为α12,…,αn的Gram矩阵,G(α12,…,αn;b)为α12,…,αn和b的协Gram矩阵。

需要注意的是G(α12,…,αn)不一定可逆,因为A的列向量组α12,…,αn不一定是线性无关向量组,当是线性无关向量组时,直接令x=G(α12,…,αn)-1·G(α12,…,αn;b)即可得到解x=[a1,a2,…,an]T。但是无论是否为线性无关向量组,都有以下结论。

首先对于方程组G(α12,…,αn)·x=G(α12,…,αn;b),即AHAx=AHb,这依然是一个非齐次的线性方程组,下面讨论该方程组的系数矩阵即AHA的秩与增广矩阵[AHA,AHb]的秩之间的关系。

首先有rank(AHA)≤rank(AHA,AHb),毕竟增加列数可能使矩阵秩增加,对吧。

而rank(AHA,AHb)=rank[AH(A,b)]≤rank(AH),毕竟两个矩阵乘积的秩小于等于任意其中一个矩阵的秩,对吧。

在实数域上有rank(A)=rank(AH)=rank(AT)。

下面的内容全部建立在实数域上,但是使用AH表示AT

将方程组Ax=0的解x代入AHAx=0一定成立,即Ax=0的解一定是AHAx=0的解。若x是方程组AHAx=0的解,对AHAx=0左右两边同左乘向量x的共轭转置xH得到xHAHAx=0,则<Ax,Ax>=0,则有Ax=0,即AHAx=0的解一定是Ax=0的解。综上所述AHAx=0与Ax=0是同解方程组,则二者的系数矩阵的秩相同,即rank(AHA)=rank(A)。

而rank(A)=rank(AH),则rank(AHA)=rank(A)=rank(AH)。又因为rank(AHA,AHb)=rank[AH(A,b)]≤rank(AH)=rank(A)=rank(AHA),即rank(AHA,AHb)≤rank(AHA),且有rank(AHA)≤rank(AHA,AHb),最后有rank(AHA)=rank(AHA,AHb)。

即对于方程组AHAx=AHb来说,系数矩阵即AHA的秩与增广矩阵[AHA,AHb]的秩相等,因此方程组AHAx=AHb总有解,即方程组G(α12,…,αn)·x=G(α12,…,αn;b)总有解,这个方程组的任意一个解α都是方程组Ax=b的近似解,这样便解决了博文开头的问题。

如果能求得比较好的解就更好了,那什么样的解是比较好的呢?

(1)对于相容的方程,称相容方程组Ax=b的所有解x中模(2-范数)最小的解是Ax=b的最小模解,其中x的2-范数是||x||=sqrt(xHx)。

(2)对于不相容的方程,也希望有方程的“解”,并要求所得到的“解”是方程组的最小二乘解最佳最小二乘解。下面对最小二乘解与最佳最小二乘解进行解释。

设A∈Cm×n,b∈Cm,n维列向量x0满足对于任何一个n维列向量x,都有||Ax0-b||2 ≤||Ax-b||2,则称x0是方程组Ax=b的一个最小二乘解。若μ是最小二乘解,如果对于任一个最小二乘解x0,都有不等式||μ||≤||x0||,则称μ是最佳最小二乘解或者最小范数最小二乘解

定理:设A∈Cm×n,B∈Cn×m,则下列两个命题是等价的:

(1) 对于任给b∈Cm,则x=Bb一定是Ax=b的最小二乘解;

(2) (AB)H=AB,ABA=A。

上述定理说明方程组Ax=b的最小二乘解是x=Bb,其中B是A的广义逆矩阵A-,且B需满足(AB)H=AB。

最后需要指出,x=A+b是方程组Ax=b的最佳最小二乘解,其中A+是矩阵A的加号逆。


总结:

(1)对于相容非齐次线性方程组Ax=b,最好的解是最小模解。

(2)对不相容非齐次线性方程组Ax=b,最好的解是最佳最小二乘解x=A+b。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于互不相容的三种流体,可以建立一个多相流体动力学模型来描述它们的行为。其中,多相流模型可以分为两种类型:界面追踪方法和界面重构方法。这里我们以界面追踪方法为例,给出模拟流程: 1. 网格划分: 将计算域划分为规则的网格,可以使用结构化网格或结构化网格。 2. 初始化: 初始化流体的初始条件,包括初始速度、压力、密度等。对于三种不相容的流体,需要指定每个流体区域的初始条件。 3. 界面追踪: 使用界面追踪方法来跟踪三种不相容流体的界面。常用的界面追踪方法包括 Level Set 方法、VOF(Volume of Fluid)方法等。 4. 速度场计算: 根据流体动力学方程,使用合适的离散化方法计算速度场。可以采用有限差分法、有限元法或其他数值方法。 5. 压力场计算: 使用连续性方程和速度场的离散化结果,计算压力场。可以采用Poisson方程的离散格式求。 6. 流体相互作用: 考虑三种不相容流体的相互作用,包括表面张力、界面跃迁等现象。可以使用合适的模型和方法来描述这些相互作用。 7. 时间步进: 根据所采用的时间积分方法,进行时间步进,更新流场的各个物理量。常用的时间积分方法包括显式方法、隐式方法和半隐式方法等。 8. 边界条件处理: 根据问题的具体要求,设置适当的边界条件。边界条件可以包括固壁条件、入口/出口条件等。 9. 收敛判据: 判断模拟结果是否收敛,可以通过残差、物理量的变化等指标进行判定。 10. 输出结果: 根据需要,输出模拟结果,包括速度场、压力场、界面形状等。 以上是一个基本的模拟流程,具体的实现细节会根据所采用的数值方法和模型而有所差异。对于三种不相容流体的模拟,需要考虑流体之间的界面跃迁、表面张力等复杂现象,并选择合适的数值方法来处理这些问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值