最小二乘的应用1-不相容方程组

1.1 不相容方程组概念理解

先解释一下什么是不相容方程组。当线性矩阵与其增广矩阵不等秩时,且系数矩阵的秩小于曾广矩阵的秩时,系数矩阵不相容。比如线性方程组 A x = b Ax=b Ax=b A A A是系数矩阵, [ A ∣ b ] [A|b] [Ab]是增广矩阵,当 A A A的秩小于 [ A ∣ b ] [A|b] [Ab]的秩不时, A A A就称为不相容系数矩阵, A x = b Ax=b Ax=b就称为不相容方程组。明显可以可以看出:不相容方程组没有非零解
再来解释一下超定方程组。超定方程组是指有效方程的个数大于未知量个数的方程组。对于方程组 B x = c Bx=c Bx=c B B B n × m n×m n×m矩阵,如果 B B B列满秩,且 R [ B ∣ c ] > n R[B|c]>n R[Bc]>n,。则方程组没有精确解,此时称方程组为超定方程组。明显可以得出超定方程组没有非零解。
同时,可以明显得出, R ( B ) = m &lt; R [ B ∣ c ] R(B)=m &lt; R[B|c] R(B)=m<R[Bc],所以超定方程组一定是不相容方程组。而且不相容方程组的一个常见来源是超定方程组

1.2 为什么会出现不相容方程组

按照正常的理解,数学是很严格的,两点确定一条直线,只要直到直线上的两个点的坐标,就能求得这条直线的方程。
例如:平面上有两个点的坐标分别为 ( 1 , 5 ) (1,5) (1,5) ( 2 , 7 ) (2,7) (2,7),直线的方程可以表示为 y = a x + b y=ax+b y=ax+b。那么可以列出方程:
5 = a + b 7 = 2 a + b \begin{aligned} 5&amp;=a+b \\ 7&amp;=2a+b \end{aligned} 57=a+b=2a+b
很容易就能求解出 a = 2 a=2 a=2 b = 3 b=3 b=3的值。而且如果再加一个点 ( 3 , 9 ) (3,9) (3,9),并列三个方程组
5 = a + b 7 = 2 a + b 9 = 3 a + b \begin{aligned} 5&amp;=a+b \\ 7&amp;=2a+b \\ 9&amp;=3a+b \end{aligned} 579=a+b=2a+b=3a+b
很容易能求解。这个方程组很像超定方程组,但是其实不是的,因为其系数矩阵的秩等于曾广矩阵的秩。
但是,这是给出的点的坐标非常准确的情况,而实际情况中是无法得出非常准确的点的坐标的,比如测量误差的存在,无法得到准确的点的坐标。而且,为了能够收集更多的信息,通常情况会去测量尽量多的点。比如,为了得到某个直线的方程,工程师测量了直线上n个点的坐标,这些坐标都是有误差的。画图如下所示,所有蓝色的点都是测量得到的点,红色的直线是实际的直线。
在这里插入图片描述
此时,有n个测量点,会列出n个方程组,就是超定方程组了。

1.3 残差向量

残差在数理统计中是指实际观察值与估计值(拟合值)之间的差。与之类比,在不相容方程组中,残差向量就是实际观察向量( b b b)与估计向量( A x Ax Ax)的差值向量。
举个例子:给点线性不相容方程组 A x = b Ax=b Ax=b,没有非零解,退而求其次,我们找到了一个尽量满足方程组的解 x ∗ x^* x,那么向量 A x ∗ − b Ax^*-b Axb就是残差向量。
可以这样理解,为了使所求得的 x ∗ x^* x尽量满足真实值 x x x,应该使残差向量最小。也就是如果残差向量最小,就说明此时的 x ∗ x^* x越准确。
在实际应用方面,任何最小化残差向量的方法,都可以用于寻找不相容方程的解。

1.4 超定方程组的最小二乘解

假设 A x = b Ax=b Ax=b是超定方程组,其中 A A A n × m n×m n×m的矩阵且 n &gt; m n&gt;m n>m,增广矩阵 [ A ∣ b ] [A|b] [Ab]的秩大于 m m m
超定方程组是无解的,但是我们可以求得其最小二乘解,将等式左右两端乘上 A A A的转置。
A T A x ∗ = A T b A^TAx^*=A^Tb ATAx=ATb
可以通过上述方程组得到 A x = b Ax=b Ax=b的最小二乘解。
A T A x ∗ = A T b A^TAx^*=A^Tb ATAx=ATb A x = b Ax=b Ax=b的关联方程组。

1.5 最小二乘解的定理

对于方程组 A x = b Ax=b Ax=b,其中 A ∈ m ∗ n A\in m*n Amn,有:

  1. 关联方程组: A T A x ∗ = A T b A^TAx^*=A^Tb ATAx=ATb总是相容的;
  2. A x = b Ax=b Ax=b的最小二乘解恰好是 A T A x = A T b A^TAx=A^Tb ATAx=ATb的解;
  3. 最小二乘解是唯一的,当且仅当矩阵 A A A的秩为 n n n;

1.6 解的公式推导

定义方程组 A x = b Ax=b Ax=b A A A为矩阵, x x x为变量, b b b为向量。
先写两个线性代数定理

  1. ∂ x T A ∂ x = A \frac{\partial x^TA}{\partial x}=A xxTA=A
  2. ∂ x T A x ∂ x = A x + A T x \frac{\partial x^TAx}{\partial x}=Ax+A^Tx xxTAx=Ax+ATx

最小二乘的优化目标
min ⁡ x ∈ R ( ∣ ∣ A x − b ∣ ∣ 2 ) 2 \min_{x\in R} (||Ax-b||_2)^2 xRmin(Axb2)2
这是多变量的优化问题,所以要对变量进行求导。
先进行展开
( ∣ ∣ A x − b ∣ ∣ 2 ) 2 = ( A x − b ) T ( A x − b ) = x T A T A x − b T A x − x T A T b + b T b \begin{aligned} (||Ax-b||_2)^2 &amp;= (Ax-b)^T(Ax-b) \\ &amp;=x^TA^TAx-b^TAx-x^TA^Tb+b^Tb \end{aligned} (Axb2)2=(Axb)T(Axb)=xTATAxbTAxxTATb+bTb
由此得到:
∂ ( ∣ ∣ A x − b ∣ ∣ 2 ) 2 ∂ x = 2 A T A x − 2 A T b \frac{\partial(||Ax-b||_2)^2}{\partial x}=2A^TAx-2A^Tb x(Axb2)2=2ATAx2ATb
让上式等于零可得
x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值