sklearn的KernelPCA

from sklearn.decomposition import KernelPCA

KernelPCA(n_components=None, *, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver='auto', tol=0, max_iter=None, remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=None)

参数说明

1、n_components,主成分个数,未指定的话,全部非零主成分均会保留

2、kernel,选择的核函数,有"linear" | “poly” | “rbf” | “sigmoid” | “cosine” | “precomputed”

3、gamma,浮点类型,默认值为default=1/n_features,此参数若选择的核函数是rbf, poly and sigmoid kernels时有效,其他核函数则请忽略

4、degree : int, default=3。Degree for poly kernels. Ignored by other kernels.

属性说明
lambdas_array, (n_components,)中心核矩阵的特征值以降序排列。如果n_components和remove_zero_eig均未设置,则将存储所有值。
alphas_array, (n_samples, n_components)中心核矩阵的特征向量。如果n_components和 remove_zero_eig均未设置,则将存储所有组件。
dual_coef_array, (n_samples, n_features)逆变换矩阵。仅当fit_inverse_transform为True 时可用 。
X_transformed_fit_array, (n_samples, n_components)拟合数据在内核主成分上的投影。仅当fit_inverse_transform为True 时可用。
X_fit_(n_samples, n_features)用于拟合模型的数据。如果为copy_X=False,则X_fit_为参考。此属性用于进行转换的调用。

.fit()

根据X中的数据拟合模型。

 |  fit(self, X, y=None)
 |      Fit the model from data in X.
 |      
 |      Parameters
 |      ----------
 |      X : array-like, shape (n_samples, n_features)
 |          Training vector, where n_samples in the number of samples
 |          and n_features is the number of features.
 |      
 |      Returns
 |      -------
 |      self : object
 |          Returns the instance itself.

.fit_transform()

根据X中的数据拟合模型并转换X。

 |  fit_transform(self, X, y=None, **params)
 |      Fit the model from data in X and transform X.
 |      
 |      Parameters
 |      ----------
 |      X : array-like, shape (n_samples, n_features)
 |          Training vector, where n_samples in the number of samples
 |          and n_features is the number of features.
 |      
 |      Returns
 |      -------
 |      X_new : array-like, shape (n_samples, n_components)

.inverse_transform()

将X转换回原始空间。

 |  inverse_transform(self, X)
 |      Transform X back to original space.
 |      
 |      Parameters
 |      ----------
 |      X : array-like, shape (n_samples, n_components)
 |      
 |      Returns
 |      -------
 |      X_new : array-like, shape (n_samples, n_features)

.transform()

转换X。

 |  transform(self, X)
 |      Transform X.
 |      
 |      Parameters
 |      ----------
 |      X : array-like, shape (n_samples, n_features)
 |      
 |      Returns
 |      -------
 |      X_new : array-like, shape (n_samples, n_components)

参考文献:sklearn.decomposition.KernelPCA(官方网站)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值