2019-9-29-熵与熵的基本性质

本文介绍了信息论中熵的概念及其基本性质,探讨了信息量度的推导,熵的定义,包括概率形式和数字特征形式。文章还讨论了联合熵、条件熵及其相关定理,如链式法则,表明知道额外信息会降低不确定性。
摘要由CSDN通过智能技术生成

#subtitle: 检测理论概述 #副标题
header-img: img/post-web.jpg #这篇文章标题背景图片
catalog: true # 是否归档
tags: #标签
- 信息与通信
- 信息论
- 基础信息论

一. 信息与不确定性

信源包含多少信息,信道能准确无误的传递多少信息,这些都是信息论要回答的问题。为了回答这些问题,我们首先要对信息的多少有一个量度。

1.1 信息量度的推导

1.1.1 信息的自变量

  • 信息的量度应该取决于那些因素,应该满足什么样的条件?
    首先,事件A 产生的信息取决于事件A 发生的概率。因此信息应该是概率的函数。
    假设事件A 以概率p 发生,那么如果事件A 发生了,它带来的信息是I§,如果事件A 没有发生,它带来的信息是I(1-p)。那么在我们不知道事件A 发生没发生之前,它蕴含的信息就应该是
    1
    这就是平均信息量的来由。

1.1.2 I(p)的确定

那么I§应当如何确定?,从描述的概念来说,它应该满足这些概念:

  • 1.I(p)>=0, 即非负性,信息不应该是负的。
  • 2.I(pq)=I§+I(q),即独立事件相加性,两个独立事件所给出的信息应该是相加的。
    可以证明,满足这三个条件的函数I 只可能是以下形式:
    1
    为了确定常量a,需要将单位1的信息量标准化:
  • 3.I(1/2) = 1,标准化,假设概率为1/2 的事件给我们的信息是1
    由此,一个取{0; 1} 的二进制随机变量X,如果取0(或者1)的概率为p,那么这个随机变量包含的平均信息就是:
    1

1.1.3 熵的引入

由此,当一个m 进制的随机变量Y ,取值为{1; 2; … ;m},取k 的概率为pk 时,它包含的信息量就是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值