#subtitle: 检测理论概述 #副标题
header-img: img/post-web.jpg #这篇文章标题背景图片
catalog: true # 是否归档
tags: #标签
- 信息与通信
- 信息论
- 基础信息论
一. 信息与不确定性
信源包含多少信息,信道能准确无误的传递多少信息,这些都是信息论要回答的问题。为了回答这些问题,我们首先要对信息的多少有一个量度。
1.1 信息量度的推导
1.1.1 信息的自变量
- 信息的量度应该取决于那些因素,应该满足什么样的条件?
首先,事件A 产生的信息取决于事件A 发生的概率。因此信息应该是概率的函数。
假设事件A 以概率p 发生,那么如果事件A 发生了,它带来的信息是I§,如果事件A 没有发生,它带来的信息是I(1-p)。那么在我们不知道事件A 发生没发生之前,它蕴含的信息就应该是
这就是平均信息量的来由。
1.1.2 I(p)的确定
那么I§应当如何确定?,从描述的概念来说,它应该满足这些概念:
- 1.I(p)>=0, 即非负性,信息不应该是负的。
- 2.I(pq)=I§+I(q),即独立事件相加性,两个独立事件所给出的信息应该是相加的。
可以证明,满足这三个条件的函数I 只可能是以下形式:
为了确定常量a,需要将单位1的信息量标准化: - 3.I(1/2) = 1,标准化,假设概率为1/2 的事件给我们的信息是1
由此,一个取{0; 1} 的二进制随机变量X,如果取0(或者1)的概率为p,那么这个随机变量包含的平均信息就是:
1.1.3 熵的引入
由此,当一个m 进制的随机变量Y ,取值为{1; 2; … ;m},取k 的概率为pk 时,它包含的信息量就是: