机器学习笔记:GRU

本文深入探讨了LSTM(长短期记忆网络)和GRU(门控循环单元)两种循环神经网络的区别。LSTM通过输入门、遗忘门和输出门控制信息流动,而GRU则使用更新门和重置门实现类似功能,但结构更简洁,参数更少。尽管GRU缺少一个门控,但在许多任务中仍能与LSTM相媲美,常因其高效计算而被选用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 LSTM复习

机器学习笔记 RNN初探 & LSTM_UQI-LIUWJ的博客-CSDN博客 中,我们使用的是这样的一张图来说明LSTM:

这里为了和GRU有一个比较,使用如下的图表示LSTM,意思是一样的,绿色和紫色的部分是二者的对照关系: 

2 GRU 原理

 在GRU模型中只有两个门:分别是更新门zt和重置门rt

        更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,更新门的值越大说明前一时刻的状态信息带入越多

        重置门控制前一状态有多少信息被写入到当前的候选集\bar{h}t上,重置门越小,前一状态的信息被写入的越少。

——>我们使用了同一个门控 就同时可以进行遗忘和选择记忆(LSTM则要使用两个门控)

 ——>与LSTM相比,GRU内部少了一个”门控“,参数比LSTM少,但是却也能够达到与LSTM相当的功能。考虑到硬件的计算能力时间成本,因而很多时候我们也就会选择更加”实用“的GRU

——>在GRU中 输入h就是记忆c,所以没有输出门。(把LSTM里面的两个传递量减少成了一个)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值