论文笔记:Mobility-LLM: Learning Visiting Intentions and Travel Preferences from Human Mobility Data wit

neurips 2024

1 intro

  • 深入挖掘check-in序列的关键在于理解其丰富的语义信息
    • 现有方法主要聚焦于特定任务(位置预测、时间预测。。。),而不是深入探究人类行为的语义信息。
      • ——>这种局限性往往导致优化目标狭窄、对签到语义的理解较浅。
    • 大语言模型在语义理解和上下文信息处理方面表现出强大能力,已在多个任务中成功适应。
      • ——>旨在将预训练的 LLM 作为强大的签到序列学习者
  • 作为典型的序列数据,签到序列蕴含丰富语义,体现出多种短期规律和内在特征。
    • 用户的未来行为往往受接近近期访问位置的短期规律影响,我们称之为访问意图(visiting intentions)
    • 个体的内在特征具有跨时间和任务的持久性,决定其出行偏好(travel preferences)
    • ——>主要挑战是:如何使 LLM 能够从签到序列中有效提取语义,全面理解用户的访问意图与出行偏好。
  • ——>论文提出了一个统一框架 Mobility-LLM,利用预训练 LLM 在多个签到分析任务(如位置预测、轨迹用户链接、时间预测)中达到 SOTA 或相当水平。
    • 从签到序列中提取语义信息,使 LLM 能够全面理解人类的访问意图和出行偏好。
  • ——>提出访问意图记忆网络(VIMN),用于捕捉用户在每次签到中的访问意图
  • ——>提出人类偏好的共享提示(HTPP),用于不同领域中引导 LLM 理解用户的出行偏好,从而实现跨领域迁移,并匹配适当领域的任务。

2 Preliminary

3 方法

3.1 整体框架

3.2 PPEL(POI嵌入)

 

3.3 VIMN 用户访问意图建模 3.4  HTPP 用户偏好建模

4 实验

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值