论文略读Fewer Truncations Improve Language Modeling

ICML 2024

1 背景

  • 在传统LLM训练过程中,为了提高效率,通常会将多个输入文档拼接在一起,然后将这些拼接的文档分割成固定长度的序列。
    • ——>会造成一个重大问题——文档截断(document truncation),损害了数据完整性(data integrity)
    • 此外,文档截断减少了每个序列中的上下文量,可能导致下一个词的预测与上文不相关,从而使模型更容易产生幻觉 (hallucination)。
      • (a):将变量定义与使用分割到不同的训练序列
        • ——>使得模型学习到错误的模式,并可能在下游任务中产生幻觉。
      • (b):摘要中的“Monday morning”无法与训练序列中的任何上下文匹配,导致内容失实
        • ——>显著降低模型对上下文信息的敏感度,导致生成的内容与实际情况不符,即所谓的不忠实生成 (unfaithful generation)。
      • (c):阻碍训练期间的知识获取,因为知识在文本中的表现形式通常依赖完整的句子或段落
  • ——>论文提出了最佳适配打包 (Best-fit Packing)
    • 使用长度感知的组合优化技术,有效地将文档打包到训练序列中,从而完全消除不必要的截断。
    • 不仅保持了传统方法的训练效率,而且通过减少数据的片段化,实质性地提高了模型训练的质量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值