论文略读: ALPAGASUS: TRAINING A BETTER ALPACA WITH FEWER DATA

ICLR 2024

1 背景

  • 大模型通常需要在有监督指令数据集上进行指令微调来加强指令遵循能力
    • 但是广泛使用的数据集包含许多具有不正确或不相关响应的低质量样本,这对大模型微调具有误导性
  • ——>论文提出了一种简单有效的数据选择策略,使用ChatGPT自动识别和过滤掉低质量数据
    • 同时引入了: ALPAGASUS,它是仅对从52k训练数据中过滤出来的9k高质量数据进行微调。
      • 在多个测试集和受控人类评估上显着优于 GPT-4
      • 将 7B 的训练时间从 80 分钟减少到 14 分钟。

2 方法

prompt的dimension是用户给定的属性(比如帮助行,准确度等) 

3 实验

LLM平均得分:

使用精简的数据微调效果更好:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值