论文略读No More Tuning: Prioritized Multi-Task Learning with Lagrangian Differential Multiplier Methods

AAAI 2025

1 INTRO

  • 对于多目标学习(multi-task learning),多个loss之间权重如何选取,是一个很复杂很费事的过程
  • 与此同时,如果多个loss存在优先级的高低,那么如何在保证高优先级目标的情况下,考虑低优先级的loss呢?
  • ——>论文提出了NMT,不需要调整参数,就可以实现在高优先级目标不受破坏的前提下,最大化低优先级目标

2 方法

2.1 两个目标的情况

  • 假设T1是高优先级目标,T2是低优先级目标(加入T2目标的时候,模型在目标T1上的表现不能被减弱)
    • \theta^*L_1(\theta)的极小值点,可以通过优化min_\theta L_1(\theta) 得到(梯度下降)
  • ——>对应的拉格朗日函数为
  • KKT条件为
  • 论文理论分析了,只需要在正常神经网络参数θ做梯度下降的同时,对拉格朗日函数中的λ做梯度上升,即可达到优化目标
    • 也即λ的更新公式为
  • 当然,当λ较大的时候,损失函数的约束项\lambda(L_1(\theta)-L_1(\theta^*))变得非常大,从而导致在梯度下降中参数θ发生大幅度的更新
    • ——>使用了重缩放,对θ梯度下降时,loss变为:

2.2 多目标的情况

  • 逐步优化次要目标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值