学习来源:《矩阵分析与应用》张贤达 清华大学出版社
Moore-Penrose 逆矩阵的计算
1. 方程求解法
第一步:分别求解矩阵方程
得到 和 。
第二步:计算广义逆矩阵 。
若矩阵 为 Hermitian 矩阵,则上述方程可以简化为
的广义逆矩阵 。由此,可以得到两种算法:
算法一:
1)计算矩阵 。
2)解矩阵方程 得到矩阵 。
3)计算 的 Moore-Penrose 逆矩阵 。
4)计算矩阵 的 Moore-Penrose 逆矩阵 。
算法二:
1)计算矩阵 。
2)解矩阵方程 得到矩阵 。
3)计算 的 Moore-Penrose 逆矩阵 。
4)计算矩阵 的 Moore-Penrose 逆矩阵 。
若矩阵 的列数大于行数,则矩阵乘积 的维数比 的维数小,所以选择算法一;反之,选择算法二。
2. KL分解法
在矩阵满秩分解中提到了 Moore-Penrose 逆矩阵的一种方法。若 是矩阵 的满秩分解,则
满足 Moore-Penrose 逆矩阵的四个条件,所以 是 的 Moore-Penrose 逆矩阵。
3. 递推法
对矩阵 的前 列进行分块 ,其中 是矩阵 的第 列。因此,分块矩阵 的 Moore-Penrose 逆矩阵 可以由 递推计算。
算法:
初始值: 。
递推: 令 ,有
4. 迹方法
已知矩阵 的秩为 ,求 Moore-Penrose 逆矩阵的迹方法为:
1)计算 。
2)令 。
3)计算
4)计算
其中 ,且 。