💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》
量化方式主要有以下两种:
训练后量化(Post-Training Quantization, PTQ):在模型训练完成后对模型进行量化。
量化感知训练(Quantization Aware Training, QAT):在模型训练过程中加入量化感知节点,使模型在训练过程中就能够适应量化。
一、训练后量化
训练后静态量化(Post-Training Quantization, PTQ)是指在模型训练完成后对模型进行量化的一种方法。在训练后静态量化中,模型的参数和权重会被转换为低精度格式,例如 int8 或 float16,以减少模型的大小和内存占用。
1.1 训练后静态量化步骤
1、训练模型: 使用浮点格式训练模型,并获得训练好的模型。
2、量化模型: 使用量化工具对模型进行量化,将模型的参数和权重转换为低精度格式。
3、评估模型: 评估量化模型的精度和性能,并进行必要的调整。
4、部署模型: 将量化模型部署到目标平台。
二、量化感知训练
量化感知训练(Quantization Aware Training, QAT)是指在模型训练过程中加入量化感知节点的一种方法。量化感知节点可以模拟量化带来的误差,并将其反馈给训练过程,从而使模型在训练过程中就能够适应量化。
2.1 量化感知训练步骤
1、训练模型: 使用浮点格式训练模型,并获得训练好的模型。
2、量化感知训练: 在模型训练过程中加入量化感知节点,并对模型进行微调。
3、评估模型: 评估量化模型的精度和性能,并进行必要的调整。
4、部署模型: 将量化模型部署到目标平台。
三、两种方法比较
四、量化方式选择
在实际应用中,可以根据模型的精度要求、性能要求和资源限制来选择合适的量化方法。
如果对精度要求不高,可以考虑使用训练后静态量化。
如果对精度要求较高,可以考虑使用量化感知训练。
五、总结
以上就是量化时该选择哪种方法的讲解,希望能帮到你!
感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖
关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!