量化方式的选择

在这里插入图片描述

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》


在这里插入图片描述

量化方式主要有以下两种:

训练后量化(Post-Training Quantization, PTQ):在模型训练完成后对模型进行量化。

量化感知训练(Quantization Aware Training, QAT):在模型训练过程中加入量化感知节点,使模型在训练过程中就能够适应量化。

一、训练后量化

训练后静态量化(Post-Training Quantization, PTQ)是指在模型训练完成后对模型进行量化的一种方法。在训练后静态量化中,模型的参数和权重会被转换为低精度格式,例如 int8 或 float16,以减少模型的大小和内存占用。

1.1 训练后静态量化步骤

1、训练模型: 使用浮点格式训练模型,并获得训练好的模型。

2、量化模型: 使用量化工具对模型进行量化,将模型的参数和权重转换为低精度格式。

3、评估模型: 评估量化模型的精度和性能,并进行必要的调整。

4、部署模型: 将量化模型部署到目标平台。

二、量化感知训练

量化感知训练(Quantization Aware Training, QAT)是指在模型训练过程中加入量化感知节点的一种方法。量化感知节点可以模拟量化带来的误差,并将其反馈给训练过程,从而使模型在训练过程中就能够适应量化。

2.1 量化感知训练步骤

1、训练模型: 使用浮点格式训练模型,并获得训练好的模型。

2、量化感知训练: 在模型训练过程中加入量化感知节点,并对模型进行微调。

3、评估模型: 评估量化模型的精度和性能,并进行必要的调整。

4、部署模型: 将量化模型部署到目标平台。

三、两种方法比较

在这里插入图片描述

四、量化方式选择

在实际应用中,可以根据模型的精度要求、性能要求和资源限制来选择合适的量化方法。

如果对精度要求不高,可以考虑使用训练后静态量化。

如果对精度要求较高,可以考虑使用量化感知训练。

五、总结

以上就是量化时该选择哪种方法的讲解,希望能帮到你!

感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖

关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值