1.创建矩阵
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
MatrixXd A(6,4);//6*4的矩阵
A << 1, 2, 3, 4, //用A<<赋值,“,”作为分隔符
1, 4, 3, 2,
1, 3, 2, 4,
4, 1, 1, 3,
2,3,5,4,
1,2,5,9;
cout << A << endl;
}
- 求解线性方程组AX=B(最小二乘)
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
//线性方程求解 Ax =B;
MatrixXd A(6, 4);
A << 1, 2, 3, 4,
1, 4, 3, 2,
1, 3, 2, 4,
4, 1, 1, 3,
2, 3, 5, 4,
1, 2, 5, 9;
cout << A << endl;
MatrixXd B(6, 1);
B << 12, 56, 23, 15, 12, 35;
Vector4d x1 = A.colPivHouseholderQr().solve(B);
cout << x1 << endl;
}
- 矩阵按索引调用格式(和MATLAB一致,索引从0开始)
A(3,2)//A矩阵的4行3列
A(3,2)=1//给A矩阵4行3列处赋值
A.size()//返回矩阵大小
A.rows()//返回矩阵行数
A.cols()//返回矩阵的列数
A.row(1)//返回矩阵的第二行数据
A.col(1)//返回矩阵的第二列数据
A.resize(m,n)//重塑A矩阵的行列,如果已经矩阵大小固定,则无法进行
- 矩阵取最大值最小值及索引位置
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
MatrixXd A(6, 4);
A << 1, 2, 3, 4,
1, 4, 3, 2,
1, 3, 2, 4,
4, 1, 1, 3,
2, 3, 5, 4,
1, 2, 5, 9;
MatrixXd::Index maxrow, maxcol;
MatrixXd::Index minRow, minCol;
int max_num = A.maxCoeff(&maxrow, &maxcol);
int min_num = A.minCoeff(&minRow, &minCol);
cout << "max value=" << max_num << " rows=" << maxrow << " cols=" << maxcol << endl;
cout << "min value=" << min_num << " rows=" << minRow << " cols=" << minCol << endl;
}
5.矩阵运算
+ - += -= * / *= /= -A//(矩阵取负)
A*A//矩阵相乘
A*vector//矩阵向量相乘
MatrixXd A = MatrixXd::Random(6, 6);//随机生成6*6测试矩阵
A.fill(10);//矩阵填充
m1=( Matrix3f(rows,cols)<<1,2,3,4,5,6,7,8,9 ).finished(),//矩阵后添加数据
- 矩阵操作操作
A.transpose() //矩阵转置
A.conjugate()//共轭矩阵
A.adjoint()//伴随矩阵
A.determinant()//矩阵的行列式
A.diagonal();//对角阵
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array();// R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array();// R = P ./ Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
**给一个已经存在的矩阵后面增加一行:**
MatrixXf s(3,4);
s<<1,2,3,4,
5,6,7,8,
9,10,11,12;
s = (MatrixXf(4,4)<<s,1,1,1,1).finished();
矩阵取反操作***********************************
matrix.rowwise().reverse()//每一行取反
matrix.colwise().reverse()//每一列取反
matrix.reverse()//整体行列分别都取反
判断矩阵是不是inf和nan*****************************
array1.isInf() isinf(array1)
array1.isNaN() isnan(array1)
7.矩阵块操作
A.block(i,j,p,q);//返回从矩阵的(i, j)开始,每行取p个元素,每列取q个元素所组成的临时新矩阵对象,原矩阵的元素不变
A.block(i,j);//返回从矩阵的i行,j列的一个新矩阵
8.向量的块操作
获取向量的前n个元素:vector.head(n);
获取向量尾部的n个元素:vector.tail(n);
获取从向量的第i个元素开始的n个元素:vector.segment(i,n);
9.向量操作
A.dot()//向量点积
A.cross()//向量叉积
A.norm()//向量范数
A.normalization()//向量归一化
A.normalized()//向量的每个数除以这个向量的范数
A.normalize()//作用和normalized()是一样的,区别在于,normalized()是产生一个临时矩阵,而这个是直接对原矩阵进行变换。
A.reserve()//向量顺序取反
矩阵和向量的混合操作:
VectorXd ind(5);
MatrixXd matrix(5,5);
matrix << 1, 2, 3, 4, 5,
4, 5, 6, 7, 8,
7, 5, 4, 5, 2,
1, 4, 7, 8, 5,
1, 2, 3, 6, 5;
ind << 1,2, 3,4, 5;
cout << matrix.rowwise() + ind.transpose() << endl;//行相加***************************
cout << matrix.colwise() + ind << endl;//列相加***************************
cout << matrix.array().rowwise()*(ind.transpose()).array() << endl;//行向累乘***********
cout << matrix.array().colwise() / (ind.array()) << endl;//列向累除**********************
10.一维Vector转为矩阵或者向量
#include <iostream>
#include <vector>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
vector<double> x;
//注意vector中元素的类型double与矩阵类型matirxX(d)一致
for(double i = 0; i < 10.0; i++)
{
x.push_back(i);
}
MatrixXd re = VectorXd::Map(&x[0],x.size());//转化成矩阵
//VectorXd re = VectorXd::Map(&x[0],x.size());//转化成向量
system("pause");
return 0;
}
- 行列顺序
Matrix <double, 5, 5, ColMajor>matrix;//列为主
//Matrix <double, 5, 5, RowMajor>matrix;//行为主
matrix << 1, 2, 3, 4, 5,
4, 5, 6, 7, 8,
7, 5, 4, 5, 2,
1, 4, 7, 8, 5,
1, 2, 3, 6, 5;
ind << 1,2, 3,4, 5;
for (int i = 0; i < matrix.size(); i++){
cout << *(matrix.data() + i) << " ";
}
cout << endl;
列为主:
行为主:
12. 矩阵,向量,行,列,向各个方向复制
(matrix.row(4)).replicate(4,1)//第五行复制四行一列
matrix.replicate(4,1)//第矩阵复制四行一列
13.数组转矩阵或向量
int array[8];
for (int i = 0; i < 8; ++i) array[i] = i;
MatrixXi aa = Map<Matrix<int, 2, 4, RowMajor> >(array);//将数组array转化为两行四列,且以行为主的矩阵
可简写为:MatrixXi aa = Map<RowVectorXi>(array);
VectorXi bb = Map<VectorXi>(array,8);//将数组array转化为向量,8表示0:8个值
VectorXi bb = Map<VectorXi>(array+3,8);//将数组array转化为向量,只取第4个到第8个
VectorXi bb = Map<VectorXi, 0, InnerStride<3> >(array+3, 2);//将数组array转化为向量,从第4个开始,步长为3,取两个
//*********************************************************************************************************
int array[12];
for(int i = 0; i < 12; ++i) array[i] = i;
cout << Map<MatrixXi, 0, OuterStride<> >(array, 3, 3, OuterStride<>(4)) << endl;//转化为列主矩阵,3*3,且步长为4的矩阵
结果:
0 4 8
1 5 9
2 6 10
参考链接:
写了半天发现别人写的更全----------------------
转载链接https://blog.csdn.net/hurmean/article/details/70143723
内容:
// A simple quickref for Eigen. Add anything that's missing.
// Main author: Keir Mierle
#include <Eigen/Dense>
Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
VectorXd v; // Dynamic column vector of doubles
double s;
// Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) //
A.resize(4, 4); // Runtime error if assertions are on.
B.resize(4, 9); // Runtime error if assertions are on.
A.resize(3, 3); // Ok; size didn't change.
B.resize(3, 9); // Ok; only dynamic cols changed.
A << 1, 2, 3, // Initialize A. The elements can also be
4, 5, 6, // matrices, which are stacked along cols
7, 8, 9; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(10); // Fill A with all 10's.
// Eigen // Matlab
MatrixXd::Identity(rows,cols) // eye(rows,cols)
C.setIdentity(rows,cols) // C = eye(rows,cols)
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
C.setZero(rows,cols) // C = ones(rows,cols)
MatrixXd::Ones(rows,cols) // ones(rows,cols)
C.setOnes(rows,cols) // C = ones(rows,cols)
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.head(n) // x(1:n)
x.head<n>() // x(1:n)
x.tail(n) // x(end - n + 1: end)
x.tail<n>() // x(end - n + 1: end)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.row(i) // P(i+1, :)
P.col(j) // P(:, j+1)
P.leftCols<cols>() // P(:, 1:cols)
P.leftCols(cols) // P(:, 1:cols)
P.middleCols<cols>(j) // P(:, j+1:j+cols)
P.middleCols(j, cols) // P(:, j+1:j+cols)
P.rightCols<cols>() // P(:, end-cols+1:end)
P.rightCols(cols) // P(:, end-cols+1:end)
P.topRows<rows>() // P(1:rows, :)
P.topRows(rows) // P(1:rows, :)
P.middleRows<rows>(i) // P(:, i+1:i+rows)
P.middleRows(i, rows) // P(:, i+1:i+rows)
P.bottomRows<rows>() // P(:, end-rows+1:end)
P.bottomRows(rows) // P(:, end-rows+1:end)
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)
// Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, i)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
// Views, transpose, etc; all read-write except for .adjoint().
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R')
R.diagonal() // diag(R)
x.asDiagonal() // diag(x)
R.transpose().colwise().reverse(); // rot90(R)
R.conjugate() // conj(R)
// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s;
// Vectorized operations on each element independently
// Eigen // Matlab
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array();// R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array();// R = P ./ Q
R = P.array() + s.array();// R = P + s
R = P.array() - s.array();// R = P - s
R.array() += s; // R = R + s
R.array() -= s; // R = R - s
R.array() < Q.array(); // R < Q
R.array() <= Q.array(); // R <= Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
(R.array() < s).select(P,Q); // (R < s ? P : Q)
// Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum() // sum(R(:))
R.colwise().sum() // sum(R)
R.rowwise().sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise().prod() // prod(R)
R.rowwise().prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))//检测矩阵中是否全为非零元素
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))//检测矩阵中是否有非零元素,如果有,则返回1,否则,返回0。用法和all一样
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2)
// Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
Type conversion
// Eigen // Matlab
A.cast<double>(); // double(A)
A.cast<float>(); // single(A)
A.cast<int>(); // int32(A)
A.real(); // real(A)
A.imag(); // imag(A)
// if the original type equals destination type, no work is done
// Note that for most operations Eigen requires all operands to have the same type:
MatrixXf F = MatrixXf::Zero(3,3);
A += F; // illegal in Eigen. In Matlab A = A+F is allowed
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)
// Eigen can map existing memory into Eigen matrices.
float array[3];
Vector3f::Map(array).fill(10); // create a temporary Map over array and sets entries to 10
int data[4] = {1, 2, 3, 4};
Matrix2i mat2x2(data); // copies data into mat2x2
Matrix2i::Map(data) = 2*mat2x2; // overwrite elements of data with 2*mat2x2
MatrixXi::Map(data, 2, 2) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)
// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV()
// Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>