1. 项目概述
本项目旨在设计并实现一个基于STM32的全栈人脸识别考勤系统。该系统结合了嵌入式开发、计算机视觉和数据库技术,实现了自动人脸检测、识别和考勤记录功能。
主要特点:
- 使用STM32F4系列微控制器作为主控制器
- 采用OpenCV进行人脸检测和识别
- Qt开发跨平台桌面应用程序,实现友好的用户界面
- SQLite嵌入式数据库存储员工信息和考勤记录
- 支持实时考勤、数据统计分析和报表生成
2. 系统设计
2.1 硬件设计
主要硬件模块及功能:
- STM32F407VGT6微控制器:系统的核心,负责协调各个模块工作
- OV7670摄像头模块:捕获实时图像,用于人脸检测和识别
- 3.5寸TFT LCD显示屏:显示系统界面和识别结果
- AS608指纹识别模块:作为辅助识别手段
- RC522 RFID读卡器:用于员工卡识别,提供备用签到方式
- ESP8266 WiFi模块:实现与服务器的无线通信,上传考勤数据
2.2 软件设计
3. 代码实现
3.1 人脸检测
以下是使用OpenCV实现人脸检测的代码示例:
#include <opencv2/opencv.hpp>
#include <opencv2/objdetect.hpp>
using namespace cv;
class FaceDetector {
private:
CascadeClassifier face_cascade;
public:
FaceDetector(const std::string& cascade_file) {
// 加载Haar级联分类器
if (!face_cascade.load(cascade_file)) {
throw std::runtime_error("Error loading face cascade file");
}
}
std::vector<Rect> detectFaces(const Mat& frame) {
Mat gray;
std::vector<Rect> faces;
// 转换为灰度图像
cvtColor(frame, gray, COLOR_BGR2GRAY);
// 执行人脸检测
face_cascade.detectMultiScale(gray, faces, 1.1, 3, 0, Size(30, 30));
return faces;
}
void drawFaces(Mat& frame, const std::vector<Rect>& faces) {
for (const auto& face : faces) {
rectangle(frame, face, Scalar(255, 0, 0), 2);
}
}
};
代码说明:
FaceDetector
类封装了人脸检测功能。- 构造函数加载Haar级联分类器文件。
detectFaces
方法接收一帧图像,返回检测到的人脸矩形区域。drawFaces
方法在原图上绘制检测到的人脸矩形框。
3.2 人脸识别
下面是使用LBPH算法实现人脸识别的代码示例:
#include <opencv2/face.hpp>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace cv::face;
class FaceRecognizer {
private:
Ptr<LBPHFaceRecognizer> model;
public:
FaceRecognizer() {
model = LBPHFaceRecognizer::create();
}
void train(const std::vector<Mat>& faces, const std::vector<int>& labels) {
model->train(faces, labels);
}
void predict(const Mat& face, int& label, double& confidence) {
model->predict(face, label, confidence);
}
void saveModel(const std::string& filename) {
model->save(filename);
}
void loadModel(const std::string& filename) {
model->read(filename);
}
};
代码说明:
FaceRecognizer
类封装