STM32全栈嵌入式人脸识别考勤系统:融合OpenCV、Qt和SQLite的解决方案

1. 项目概述

本项目旨在设计并实现一个基于STM32的全栈人脸识别考勤系统。该系统结合了嵌入式开发、计算机视觉和数据库技术,实现了自动人脸检测、识别和考勤记录功能。

主要特点:

  • 使用STM32F4系列微控制器作为主控制器
  • 采用OpenCV进行人脸检测和识别
  • Qt开发跨平台桌面应用程序,实现友好的用户界面
  • SQLite嵌入式数据库存储员工信息和考勤记录
  • 支持实时考勤、数据统计分析和报表生成

2. 系统设计

2.1 硬件设计

主要硬件模块及功能:

  • STM32F407VGT6微控制器:系统的核心,负责协调各个模块工作
  • OV7670摄像头模块:捕获实时图像,用于人脸检测和识别
  • 3.5寸TFT LCD显示屏:显示系统界面和识别结果
  • AS608指纹识别模块:作为辅助识别手段
  • RC522 RFID读卡器:用于员工卡识别,提供备用签到方式
  • ESP8266 WiFi模块:实现与服务器的无线通信,上传考勤数据

2.2 软件设计

3. 代码实现

3.1 人脸检测

以下是使用OpenCV实现人脸检测的代码示例:

#include <opencv2/opencv.hpp>
#include <opencv2/objdetect.hpp>

using namespace cv;

class FaceDetector {
private:
    CascadeClassifier face_cascade;

public:
    FaceDetector(const std::string& cascade_file) {
        // 加载Haar级联分类器
        if (!face_cascade.load(cascade_file)) {
            throw std::runtime_error("Error loading face cascade file");
        }
    }

    std::vector<Rect> detectFaces(const Mat& frame) {
        Mat gray;
        std::vector<Rect> faces;

        // 转换为灰度图像
        cvtColor(frame, gray, COLOR_BGR2GRAY);
        
        // 执行人脸检测
        face_cascade.detectMultiScale(gray, faces, 1.1, 3, 0, Size(30, 30));

        return faces;
    }

    void drawFaces(Mat& frame, const std::vector<Rect>& faces) {
        for (const auto& face : faces) {
            rectangle(frame, face, Scalar(255, 0, 0), 2);
        }
    }
};

代码说明:

  1. FaceDetector类封装了人脸检测功能。
  2. 构造函数加载Haar级联分类器文件。
  3. detectFaces方法接收一帧图像,返回检测到的人脸矩形区域。
  4. drawFaces方法在原图上绘制检测到的人脸矩形框。

 

3.2 人脸识别

下面是使用LBPH算法实现人脸识别的代码示例:

#include <opencv2/face.hpp>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace cv::face;

class FaceRecognizer {
private:
    Ptr<LBPHFaceRecognizer> model;

public:
    FaceRecognizer() {
        model = LBPHFaceRecognizer::create();
    }

    void train(const std::vector<Mat>& faces, const std::vector<int>& labels) {
        model->train(faces, labels);
    }

    void predict(const Mat& face, int& label, double& confidence) {
        model->predict(face, label, confidence);
    }

    void saveModel(const std::string& filename) {
        model->save(filename);
    }

    void loadModel(const std::string& filename) {
        model->read(filename);
    }
};

代码说明:

  1. FaceRecognizer类封装
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客小张

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值