矩阵的合同是线性代数中一个重要的概念,它刻画了两个实对称矩阵在某种变换下的等价关系。 与相似变换不同,合同变换更关注矩阵的二次型性质。
1. 定义
设 A A A 和 B B B 是两个 n × n n \times n n×n 的实对称矩阵。如果存在一个 n × n n \times n n×n 的可逆矩阵 P P P,使得
B = P T A P B = P^T A P B=PTAP
则称矩阵 A A A 与 B B B 合同。 这里 P T P^T PT 表示矩阵 P P P 的转置。
2. 合同的性质
- 自反性: 任何实对称矩阵都与自身合同 ( A = I T A I A = I^T A I A=ITAI, 其中 I I I 是单位矩阵)。
- 对称性: 如果 A A A 与 B B B 合同,则 B B B 与 A A A 合同。 因为如果 B = P T A P B = P^T A P B=PTAP,则 A = ( P − 1 ) T B ( P − 1 ) A = (P^{-1})^T B (P^{-1}) A=(P−1)TB(P−1),而 ( P − 1 ) T = ( P T ) − 1 (P^{-1})^T = (P^T)^{-1} (P−1)T=(PT)−1。
- 传递性: 如果 A A A 与 B B B 合同,且 B B B 与 C C C 合同,则 A A A 与 C C C 合同。 因为如果 B = P T A P B = P^T A P B=PTAP 且 C = Q T B Q C = Q^T B Q C=QTBQ,则 C = Q T ( P T A P ) Q = ( P Q ) T A ( P Q ) C = Q^T (P^T A P) Q = (PQ)^T A (PQ) C=QT(PTAP)Q=(PQ)TA(PQ),而 P Q PQ PQ 是可逆矩阵。
因此,合同是一种等价关系。
3. 合同的不变量
合同变换保持一些重要的矩阵性质不变,这些性质被称为合同不变量。 最重要的合同不变量是:
- 秩: 合同矩阵具有相同的秩,即 r a n k ( A ) = r a n k ( B ) rank(A) = rank(B) rank(A)=rank(B)。
- 正惯性指数、负惯性指数和零惯性指数: 这三个指数描述了实对称矩阵的二次型。 设 A A A 的正惯性指数为 p p p,负惯性指数为 q q q,零惯性指数为 r r r ( p + q + r = n p+q+r=n p+q+r=n )。 则 A A A 与 B B B 合同的充要条件是它们具有相同的正惯性指数、负惯性指数和零惯性指数。 这是合同变换最重要的性质。
- 符号差: 符号差定义为正惯性指数与负惯性指数的差,即 p − q p - q p−q。 合同矩阵具有相同的符号差。
4. 合同与二次型
矩阵的合同与二次型密切相关。 对于一个 n × n n \times n n×n 实对称矩阵 A A A,对应的二次型为:
Q ( x ) = x T A x Q(x) = x^T A x Q(x)=xTAx
其中 x x x 是一个 n × 1 n \times 1 n×1 的向量。 如果 A A A 与 B B B 合同,即 B = P T A P B = P^T A P B=PTAP,则可以证明, A A A 和 B B B 的二次型在坐标变换 y = P x y = Px y=Px 下保持不变,即 Q ( x ) = y T B y Q(x) = y^T B y Q(x)=yTBy。 这表明合同变换保持了二次型的本质属性。
5. 合同的判定
判定两个实对称矩阵是否合同,最有效的方法是计算它们的正惯性指数、负惯性指数和零惯性指数。 如果这些指数相同,则两个矩阵合同;否则,它们不合同。 可以使用Sylvester惯性定理来确定这些指数。
6. 与相似和等价的关系
- 相似: 相似变换要求 B = P − 1 A P B = P^{-1}AP B=P−1AP,只对方阵成立,且不依赖于矩阵的转置。 相似变换保持特征值不变,但并不一定保持二次型的性质。
- 等价: 等价变换要求 B = P A Q B = PAQ B=PAQ,其中 P P P 和 Q Q Q 都是可逆矩阵,它是一个更广泛的关系,不局限于对称矩阵,也不一定保持二次型的性质。
总之,矩阵的合同是一种特殊的等价关系,它主要用于研究实对称矩阵及其对应的二次型。 合同变换保持二次型的本质属性不变,其最重要的不变量是正惯性指数、负惯性指数和零惯性指数。 理解合同的概念对于深入理解二次型理论和线性代数的其他方面至关重要。