PyTorch框架学习七——自定义transforms方法

虽然前面的笔记介绍了很多PyTorch给出的transforms方法,也非常有用,但是也有可能在具体的问题中需要开发者自定义transforms方法,这次笔记就介绍如何自定义transforms方法。

ps:本次笔记中使用的原始图像出自上次笔记:https://blog.csdn.net/qq_40467656/article/details/107958492

一、自定义transforms注意要素

从数据读取机制DataLoader我们知道了transforms的内部工作原理,是在Compose类的__call__函数定义并实现的:

class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

由此出发,可以看出自定义transforms需要注意两个要素:

  1. 仅接收一个参数img,并返回一个参数img;
  2. transforms之间要注意上下游的输入与输出的格式匹配。

二、自定义transforms步骤

首先,自定义的transforms的输入参数可能不只img一个,如概率p等等,但是原来的代码只允许接收一个参数返回一个参数,所以可以在原来的基础上改进:

class YourTransforms(object):
	def __init__(self, ...):  # ...是要传入的多个参数
		# 对多参数进行传入
		# 如 self.p = p 传入概率
		# ...
	def __call__(self, img):  # __call__函数还是只有一个参数传入
		# 该自定义transforms方法的具体实现过程
		# ...
		return img

步骤如下:

  1. 自定义一个类YourTransforms,结构类似Compose类
  2. __init__函数作为多参数传入的地方
  3. __call__函数具体实现自定义的transforms方法

三、自定义transforms实例:椒盐噪声

椒盐噪声:又称为脉冲噪声,是一种随机出现的白点或黑点,白点被称为盐噪声,黑点被称为椒噪声,其与信噪比(SNR)息息相关。

此外,我们还想加入概率p这个参数,实现随机添加椒盐噪声。

仿照实现步骤,先写出其实现的大致框架:

class AddPepperNoise(object):
	def __init__(self, snr, p):  # snr, p 是要传入的多个参数
		self.snr = snr
		self.p = p 
	def __call__(self, img):  # __call__函数还是只有一个参数传入
		'''
		添加椒盐噪声的具体实现过程
		'''
		return img

完整实现代码:

class AddPepperNoise(object):
    """增加椒盐噪声
    Args:
        snr (float): Signal Noise Rate
        p (float): 概率值,依概率执行该操作
    """

    def __init__(self, snr, p=0.9):
        assert isinstance(snr, float) and (isinstance(p, float))
        self.snr = snr
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): PIL Image
        Returns:
            PIL Image: PIL image.
        """
        if random.uniform(0, 1) < self.p:
            img_ = np.array(img).copy()
            h, w, c = img_.shape
            signal_pct = self.snr
            noise_pct = (1 - self.snr)
            mask = np.random.choice((0, 1, 2), size=(h, w, 1), p=[signal_pct, noise_pct/2., noise_pct/2.])
            mask = np.repeat(mask, c, axis=2)
            img_[mask == 1] = 255   # 盐噪声
            img_[mask == 2] = 0     # 椒噪声
            return Image.fromarray(img_.astype('uint8')).convert('RGB')
        else:
            return img

添加椒盐噪声之后:
在这里插入图片描述

### 关于 PyTorch 中与“土堆”相关的实现 在 PyTorch学习资源中,“小土堆”的教程是一个非常受欢迎的教学系列,尤其是在 B 站上发布的《PyTorch 学习笔记》[^1]。该系列涵盖了从基础到高级的各种主题,适合初学者快速入门并深入理解 PyTorch。 #### 一、核心概念解析 1. **数据预处理** 使用 `transforms.ToTensor()` 可以轻松地将 PIL 图像或 NumPy 数组转换为 PyTorch 能够处理的张量类型。这是构建深度学习模型的第一步,通常用于加载和准备训练数据集。 2. **自定义模型结构** 继承 `nn.Module` 是构建神经网络的核心方法之一[^2]。通过这种方式,开发者能够灵活设计自己的模型架构,并利用框架内置的功能完成参数管理和其他操作。 3. **环境配置技巧** 如果您使用 Anaconda 创建新的 Python 环境,则可以通过命令行激活目标环境后运行特定包安装指令来设置 Jupyter Notebook 支持[^3]。例如: ```bash conda activate your_env_name conda install nb_conda ``` 4. **CUDA 功能检测** 利用 `torch.cuda.is_available()` 函数可以判断当前设备是否支持 GPU 加速计算[^4]。此函数返回布尔值 True 或 False 表明硬件兼容情况以及驱动程序状态正常与否。 #### 二、实际案例演示——手写数字识别 MNIST 数据集分类器 以下是基于上述理论知识编写的一个简单示例代码片段: ```python import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.nn as nn import torch.optim as optim # 定义超参数 batch_size = 64 learning_rate = 0.01 epochs = 5 # 数据变换规则 transform = transforms.Compose([ transforms.ToTensor(), # 将图片转成 Tensor 并缩放到 [0,1] 区间 ]) # 下载 MNIST 数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transform) # 构建 Data Loader train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 自定义 CNN 模型 class SimpleCNN(nn.Module): # 继承 nn.Module 基类 def __init__(self): super(SimpleCNN, self).__init__() self.conv_layer = nn.Sequential( nn.Conv2d(1, 10, kernel_size=5), nn.MaxPool2d(2), nn.ReLU(), nn.Conv2d(10, 20, kernel_size=5), nn.Dropout2d(), nn.MaxPool2d(2), nn.ReLU() ) self.fc_layer = nn.Linear(320, 10) # 输出层有十个类别 def forward(self, x): out = self.conv_layer(x) out = out.view(-1, 320) # 展平 tensor out = self.fc_layer(out) return out model = SimpleCNN() if torch.cuda.is_available(): # 若存在可用 CUDA 设备则迁移至 GPU 上执行运算 model = model.cuda() criterion = nn.CrossEntropyLoss() # 设置损失函数 optimizer = optim.SGD(model.parameters(), lr=learning_rate) # 配置优化算法 for epoch in range(epochs): total_loss = 0 correct_predictions = 0 for data, target in train_loader: if torch.cuda.is_available(): data, target = data.cuda(), target.cuda() optimizer.zero_grad() # 清零梯度缓存 output = model(data) # 正向传播过程 loss = criterion(output, target) # 计算误差 loss.backward() # 执行反向传播更新权重 optimizer.step() # 应用梯度下降调整参数 _, predicted = torch.max(output, dim=1) total_loss += loss.item()*data.size(0) correct_predictions += (predicted == target).sum().item() avg_loss = total_loss / len(train_loader.dataset) accuracy = correct_predictions / len(train_loader.dataset)*100. print(f'Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.4f}, Accuracy: {accuracy:.2f}%') print('Training completed.') ``` 以上脚本展示了如何运用 PyTorch 来解决经典的图像分类问题,其中涉及到了多个重要组件的应用场景。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值