CUDA卷积计算及其优化——以一维卷积为例

CUDA 卷积计算及其优化——以一维卷积为例

《大规模并行处理器编程实战》学习,其他章节关注专栏 CUDA C

初次接触 CUDA C 编程不建议直接阅读,友情链接:
建议阅读:在卷积优化前,熟悉核函数的组织形式有利于更好的位置映射-CUDA编程入门(一):以图片运算看线程的组织和核函数的使用
  • 纯C++/CUDA 编写的卷积神经网络实现项目

对于输入数据为N[Width],卷积核大小为M[Mask_Width]的卷积运算,进行不同程度的优化(这里的卷积指滤波/内积,而不需要旋转),输出为P[Width]。

1.常规的一维卷积

常规的一维卷积比较简单,线程数为Width,每个线程负责一个输出值得Mask_Width宽度的卷积运算,即:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YZ69hRG9-1619598532835)(CUDA卷积计算及其优化_files/c2a1ebeb-2958-486d-97d7-b0c93cbe521a.jpg)]

2.利用共享存储器的卷积优化(使用光环元素的分块一维卷积)

由于直接卷积时,相邻线程在数据读取时都需要访问N,N在全局存储器上,这样会造成不断的访问全局存储器,因此可以利用共享存储器进行优化,先将数据放在共享存储器上,再不断的访问共享存储器,提高效率。
shared 变量声明的共享存储器对线程块是共享的,因此在使用分块卷积时才有优化的效果。可对于每一线程块先加载其整个线程块中的线程用到的数据N到共享存储器,然后再利用共享存储器进行计算,以减少线程块中线程对全局存储器的不断访问。
假如卷积核长度为5,数据长度为16,则分块卷积时,各个块内使用到的数据N如下:
在这里插入图片描述

分块0中的空元素称为幽灵元素,分块0中的2,3被分块1重复使用,分块1中的4,5同样被分块0使用,这些被多个块重复使用的元素称为光环元素/边缘元素。其余元素称为内部元素。
对于每个分块,建立一个共享存储器,将该分块用到的元素都放进去:
在这里插入图片描述

内部元素的加载比较简单,其映射与前面直接读取是一致的。对于光环元素的加载,采用不同的方式。如上图,分3步对共享存储器进行加载,n表示MASK_Width/2,即光环元素的长度:

  1. 第一步,利用线程块中后n个线程加载前面的光环元素(n个)。为什么要用后面的加载前面的,如上图所示,在分块1中,6,7的位置与分块0中2,3的位置是一致的,因此只需要在利用threadidx和blockidx计算N中的对应位置时将blockidx-1,即可从对6,7的映射变到对2,3的映射,这样更容易计算前n个光环元素在N中的位置,具体如下:
    在这里插入图片描述

  2. 第二步,加载内部元素
    在这里插入图片描述

  3. 第三步,加载后n个光环元素,同样利用前n个块中线程进行加载:
    在这里插入图片描述

加载到共享存储器后,进行正常的运算即可:
在这里插入图片描述

3.利用通用高速缓存

对于光环元素, 由于两个分块都有读取,因此不一定需要加载到共享存储器上。因为分块0从全局存储器读取该光环元素后,分块1可以直接在通用高速缓存中读取,无须加载进共享内存。所有分块只需要把内部元素加载到共享存储器即可。
在这里插入图片描述

### 卷积计算原理 卷积是一种重要的数学运算,在信号处理、图像处理以及机器学习等领域广泛应用。对于离散时间序列,卷积定义为两个函数f和g的线性操作,其结果是一个新的函数h表示这两个原始函数之间的重叠程度随位移变化的情况[^1]。 当应用于二维数据如图片时,卷积通常涉及一个小矩阵(称为滤波器或内核),该矩阵滑过整个输入空间并与局部区域相乘求和形成输出特征图的一部分。此过程能够提取不同类型的模式,比如边缘检测或其他纹理特性。 #### 使用MATLAB计算卷积 为了便于理解卷积的具体工作流程,可以通过编程语言实现简单的子。以下是使用MATLAB执行基本的一维卷积: ```matlab % 定义输入向量x和卷积核w x = [1, 2, 3, 4]; w = [-1, 0, 1]; % 执行卷积并显示结果 y = conv(x,w,'same'); disp(y); ``` 这段代码展示了如何通过内置`conv()`函数来进行一维数组间的卷积操作,并指定参数'`same`'使输出大小与输入相同。 #### 利用C语言实现卷积计算 除了高级脚本环境外,还可以用更底层的语言编写高效的算法版本。下面给出了一段用于完成同样任务但基于C语言的手工编码方案: ```c #include <stdio.h> void convolution(int *input, int inputSize, int *kernel, int kernelSize, float output[]) { for (int i = 0; i < inputSize - kernelSize + 1; ++i){ float sum = 0; for (int j = 0; j < kernelSize; ++j) sum += input[i+j]*kernel[j]; // 对应位置元素相乘累加 output[i]=sum; } } // 测试程序入口点 int main(){ int x[] = {1, 2, 3, 4}; int w[] = {-1, 0, 1}; const size_t INPUT_SIZE=sizeof(x)/sizeof(*x), KERNEL_SIZE=sizeof(w)/sizeof(*w); float result[INPUT_SIZE-KERNEL_SIZE+1]={}; convolution(x, INPUT_SIZE, w, KERNEL_SIZE, result); printf("Convolution Result:\n"); for(size_t k=0;k<INPUT_SIZE-KERNEL_SIZE+1;++k)printf("%f ",result[k]); return 0; } ``` 上述片段实现了自定义的卷积逻辑,其中核心在于双重循环结构——外部迭代遍历有效窗口范围内的每一个起始索引;内部则负责逐项访问当前子区间及其对应的权值系数完成累积求和。 ### 加速卷积计算的方法 随着模型复杂性的增长,传统CPU上的卷积计算效率逐渐无法满足实时性和大规模训练的需求。为此,研究者们探索了多种途径来提升性能,其中包括但不限于GPU加速技术和专用硬件设计。 - **CUDA加速**:借助NVIDIA提供的Compute Unified Device Architecture(CUDA),可以在图形处理器(Graphics Processing Unit,GPU)上高效运行大量并行化的浮点数密集型任务。特别是针对卷积层这样的重复性高且易于划分成独立单元的工作负载尤为适用。文中提到利用CUDA进行优化不仅限于理论层面还给出了具体的实践指导和样源码[^2]。 - **TPU脉动阵列架构**:由Google开发的一种专门面向张量运算(Tensor Operations)定制化集成电路(Application Specific Integrated Circuit,ASIC)。它采用了独特的脉动阵列(Pulse Array)布局策略,允许灵活调整参与计算的数据流方向从而适应不同的应用场景。这种灵活性体现在可以选择固定某些维度的同时让其他两方面按顺序传递信息直到最终获得完整的卷积响应[^3]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值