线性代数笔记【矩阵与线性方程组】

矩阵的初等变换

方程组初等变换

  • 对调两个方程的位置
  • 用一个非零的数乘某个方程的两边
  • 把一个方程的倍数加到另一个方程上

经过这三种变换,线性方程组的解不变,将这三种变换称为线性方程组的初等变换,或可以叫作同解变换

矩阵的初等变换

由于矩阵和线性方程组之间存在某种神秘关系,可以定义矩阵的初等变换

  • 对调行变换:对调A的第i行和第j行的位置,记作 r i ↔ r j r_i \leftrightarrow r_j rirj

  • 倍乘行变换:用一个非零数k乘A的第i行,记作 r i × k r_i \times k ri×k

  • 倍加行变换:将A中的第i行的k倍加到第j行,记作 r j + k r i r_j+kr_i rj+kri

同理,存在用 c i 、 c j c_i 、c_j cicj(英语行row,列column,同理转置的T来源于transpose)表示的对调列变换、倍乘列变换、倍加列变换,这两类变换分别称为初等行变换和初等列变换,两类变换合称矩阵的初等变换 r i × 1 2 、 r j + ( − 2 ) r i r_i \times \frac{1}{2}、r_j+(-2)r_i ri×21rj+(2)ri这两种记号也可写作 r i ÷ 2 、 r j − r i r_i \div 2、r_j-r_i ri÷2rjri

要特别注意:倍加变换中 r j + k × r i r_j+k \times r_i rj+k×ri r i + k × r j r_i + k \times r_j ri+k×rj含义不同,一个是把ri乘k后加到j行,一个是把rj乘k后加到i行!

矩阵的初等变换可逆

等价

若矩阵A经过有限次初等变换变成B,则称A与B等价,记作 A → B A \rightarrow B AB A ∼ B A \sim B AB

A与B等价也称A与B相抵

A与B等价,B也与A等价; A → B A \rightarrow B AB B → C B \rightarrow C BC,则 A → C A \rightarrow C AC

线性方程组消元法的本质

常用的线性消元法就是有n个未知数、n个方程,将未知数顺次排列,使用增广矩阵表示这些方程,并用行初等变换后可以得到形如 E n [ X ] E_n [X] En[X]这样的矩阵,其中X就是各个未知数的解

初等矩阵

由单位矩阵E经过一次初等变换得到的矩阵叫初等矩阵

依据初等变换方式的不同可以将初等矩阵分为对调矩阵Ei,j、倍乘矩阵Ei(k)、倍加矩阵Ei,j(k),其中倍加矩阵指的是把第j行数乘k后加到第i行所得矩阵

初等矩阵的基本性质

E i , j T = E i , j 、 E i T ( k ) = E i ( k ) E^T_{i,j}=E_{i,j}、E^T_i(k)=E_i(k) Ei,jT=Ei,jEiT(k)=Ei(k):转置对对调和倍乘不起作用

E i , j T ( k ) = E j , i ( k ) E^T_{i,j}(k)=E_{j,i}(k) Ei,jT(k)=Ej,i(k):转置会让倍加调换

以下是三种获得单位矩阵性质

E i , j E i , j = E E_{i,j}E_{i,j}=E Ei,jEi,j=E

E i ( k ) E i ( k − 1 ) = E E_i(k)E_i(k^{-1})=E Ei(k)Ei(k1)=E

E i , j ( k ) E i , j ( − k ) = E E_{i,j}(k)E_{i,j}(-k)=E Ei,j(k)Ei,j(k)=E

其中 i ≠ j , k ≠ 0 i \neq j,k \neq 0 i=j,k=0

初等矩阵+矩阵乘法=初等变换

一个矩阵左乘初等矩阵等同于对这个矩阵作同类型的初等变换

一个矩阵右乘初等矩阵等同于对这个矩阵作同类型的初等变换

左乘xxx就是在矩阵左边乘xxx,右乘xxx就是在矩阵右边乘xxx

等价标准型

基本定理1

对于任何方阵A,只用有限次初等变换都能将A化为上三角矩阵

另一表述:

一定存在一个倍加矩阵P使 ∑ P i A 或 ∑ A P i \sum P_i A或\sum AP_i PiAAPi为上三角形矩阵

在变换中间可以交叉使用行初等变换或列初等变换

基本定理2

对于任何m x n非零矩阵A,必能用初等变换把它化为形如 F = ( E s O O O ) F=\begin{pmatrix} E_s & O \\ O & O\end{pmatrix} F=(EsOOO)的矩阵,其中Es是一个单位矩阵,也可以是数1(1x1的单位矩阵,元素为1),其中F叫做矩阵A的等价标准型,s是A的秩,它由A唯一确定

秩相关的内容将在以后讲解

F包括 F = ( E m O ) F=\begin{pmatrix} E_m & O\end{pmatrix} F=(EmO) F = ( E n O ) F=\begin{pmatrix} E_n\\ O\end{pmatrix} F=(EnO) F = E F=E F=E三种特殊情况,分别对应s=m<n、s=n<m、s=m=n

NxN型线性方程组

NxN型齐次线性方程组

齐次线性方程组Ax=0一定有解x=0,把这个解称为Ax=0的零解;若 u ≠ 0 u\neq0 u=0也是它的解,则称u是Ax=0的非零解

而齐次线性方程组的解分为两种情况:只有零解或有非零解

NxN型齐次线性方程组Ax=0只有零解(有非零解)的充要条件是 ∣ A ∣ ≠ 0 |A|\neq0 A=0,也就是A可逆

NxN型非齐次线性方程组

NxN型非齐次线性方程组Ax=b有唯一解的充要条件是 ∣ A ∣ ≠ 0 |A|\neq0 A=0(即A可逆),其解为x=A-1b

克拉默法则:当 ∣ A ∣ ≠ 0 |A|\neq0 A=0时,NxN型非齐次线性方程组Ax=b有唯一解 x i = ∣ B i ∣ ∣ A ∣ , ( i = 1 , 2 , ⋯   , n ) x_i=\frac{|B_i|}{|A|},(i=1,2,\cdots,n) xi=ABi,(i=1,2,,n),其中Bi是把A的第i列换为b所得的矩阵

解系数矩阵为可逆矩阵的线性方程组的三种方法

  1. 初等行变换法

    运算量最小,需要将矩阵变为左边是单位矩阵,右边是方程的解的形式

  2. 求逆矩阵法

    运算量中等,需要求出A的行列式和伴随矩阵

  3. 利用克拉默法则

    运算量最大,需要算出A和b的对应矩阵、行列式

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值