线性代数笔记【矩阵与向量】

向量的矩阵形式

n个有次序的数所组成的数组称为n元向量,这n个数称为该向量的n个分量

分量全是实数的向量称为实向量;分量为复数的向量是复向量;分量全为零的向量称为零向量,记作0,需要指明分量个数时记作0n

n元向量可以写成行向量或列向量的形式,二者相差一次转置运算,记为 a T ≠ a a^T \neq a aT=a

所有n元实向量的集合记作 R n R^n Rn

一般地,对所有没有指明的向量,都当作列向量,使用 e i ∈ R n e_i \in R^n eiRn表示第i个分量是1,其余分量都为0的n元列向量。若干个同元数的列向量的集合叫做列向量组,若干个同元的行向量的集合叫做行向量组

向量是特殊的矩阵,一个向量组可组成一个矩阵;反之,一个矩阵又可以看作是由它的行向量组或列向量组构成的

分块矩阵

若干个同元数的列向量的集合叫做列向量组,若干个同元数的行向量的集合叫做行向量组,对矩阵也可以进行类似的操作:用若干条纵贯整个矩阵的横线和竖线把矩阵A分成许多小块,每个小块都称为子矩阵,以这些子矩阵为元素的“形式上”的矩阵称为A的分块矩阵

A = [ λ 0 1 0 0 α 0 1 3 1 5 ψ 8 1 4 0 ] A=\left[ \begin{array}{cc|cc} \lambda & 0 & 1 & 0 \\ 0 & \alpha & 0 & 1 \\ \hline 3 & 1 & 5 & \psi \\ 8 & 1 & 4 & 0 \\ \end{array} \right] A=λ0380α11105401ψ0
上面的A可以看作
A = [ T B C D ] A=\left[ \begin{array}{cc|cc} T & B\\ C & D\\ \end{array} \right] A=[TCBD]
其中
T = [ λ 0 0 α ] B = [ 1 0 0 1 ] C = [ 3 1 8 1 ] D = [ 5 ψ 4 0 ] T=\left[ \begin{array}{cc|cc} \lambda & 0\\ 0 & \alpha \\ \end{array} \right]B=\left[ \begin{array}{cc|cc} 1 & 0\\ 0 & 1\\ \end{array} \right] C=\left[ \begin{array}{cc|cc} 3 & 1\\ 8 & 1\\ \end{array} \right]D=\left[ \begin{array}{cc|cc} 5 & \psi \\ 4 & 0\\ \end{array} \right] T=[λ00α]B=[1001]C=[3811]D=[54ψ0]
常见的分块方式如下:

  • 矩阵自己分成一块,即m*n的矩阵变成1*1的分块矩阵
  • 按列分块: A = [ a 1 , a 2 , ⋯   , a n ] A=[a_1,a_2,\cdots,a_n] A=[a1,a2,,an],其中an都是列向量
  • 按行分块:和上面类似,每个子矩阵都是行向量
  • 分成2*2的分块矩阵,其中左上角的子矩阵应该是一个方阵
  • 分块对角矩阵、分块上三角矩阵、分块下三角矩阵等:看情况来,一般化为三角分块矩阵可以简化一些运算

分块矩阵运算

加减法

分块矩阵相加减,每个子矩阵都加减对应的子矩阵,如下所示
A + B = [ A 11 + B 11 ⋯ A 1 r + B 1 r ⋮ ⋮ A s 1 + B s 1 ⋯ A s r + B s r ] A+B=\left[ \begin{array}{cc} A_{11} +B_{11} & \cdots & A_{1r}+B_{1r} \\ \vdots & &\vdots\\ A_{s1}+B_{s1} & \cdots & A_{sr}+B_{sr}\\ \end{array} \right] A+B=A11+B11As1+Bs1A1r+B1rAsr+Bsr

数乘

分块矩阵数乘k,每个子矩阵都数乘k,如下所示

k A = [ k A 11 ⋯ k A 1 r ⋮ ⋮ k A s 1 ⋯ k A s r ] kA=\left[ \begin{array}{cc} kA_{11} & \cdots & kA_{1r} \\ \vdots & &\vdots\\ kA_{s1} & \cdots & kA_{sr}\\ \end{array} \right] kA=kA11kAs1kA1rkAsr

矩阵乘法

当A为m*l矩阵,b为l*n矩阵时,对A的列和B的行采用相同的分块方法时,有以下矩阵乘法法则:
A B = [ C i j ] s × r AB=[C_{ij}]_{s \times r} AB=[Cij]s×r
其中, C i j = ∑ k = 1 t A i k B k j C_{ij}=\sum_{k=1}^t A_{ik}B_{kj} Cij=k=1tAikBkj

要求:子矩阵Ai的列数必须等于子矩阵Bj的行数,Aik必须在Bkj的左侧,不能随意交换位置

转置

分块矩阵转置时,子矩阵的行位置变成列位置(子矩阵关于主对角线进行对称),且每个子矩阵都要进行转置

特殊规律

A = A E n = A [ e 1 , e 2 , ⋯   , e n ] = [ A e 1 , A e 2 , ⋯   , A e n ] A=AE_n=A[e_1,e_2,\cdots,e_n]=[Ae_1,Ae_2,\cdots,Ae_n] A=AEn=A[e1,e2,,en]=[Ae1,Ae2,,Aen]

可以用 e i T A e_i^TA eiTA表示A的第i行,用 A e j Ae_j Aej表示A的第j列,进一步可以用 e i T A e j e_i^TAe_j eiTAej表示A的(i,j)元aij

一个矩阵乘En就可以得到该矩阵的第n列

可逆矩阵

对于非0数a,存在其倒数,记作 a − 1 = 1 a a^{-1}=\frac{1}{a} a1=a1 a a − 1 = a − 1 a = 1 aa^{-1}=a^{-1}a=1 aa1=a1a=1,又称为逆数

对于矩阵也可以推广出类似的逆矩阵

可逆矩阵定义与性质

对于n阶方阵A,若存在n阶方阵B,使AB=BA=E,则A叫做可逆矩阵,B叫做A的逆矩阵

若不存在这样的B,则A不可逆

可逆矩阵及其逆矩阵都是方阵

若A可逆,则A的逆矩阵唯一,记作 A − 1 A^{-1} A1

一般的矩阵乘法不满足消去律,但若某矩阵A可逆,则有 A X = A Y = > A − 1 A X = A − 1 A Y = > X Y AX=AY => A^{-1}AX=A^{-1}AY => XY AX=AY=>A1AX=A1AY=>XY可以消去

推论

若方阵A和B满足AB=E,则AB都可逆,且 A − 1 = B , B − 1 = A A^{-1}=B,B^{-1}=A A1=B,B1=A

计算逆矩阵

伴随矩阵

矩阵A是n阶方阵,把由A的各个代数余子式组成的矩阵
A ∗ = [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ] A^*= \left[\begin{matrix} A_{11} &A_{21}&\cdots&A_{n1}\\ A_{12} &A_{22}&\cdots&A_{n2}\\ \vdots &\vdots&&\vdots\\ A_{1n} &A_{2n}&\cdots&A_{nn}\\ \end{matrix}\right] A=A11A12A1nA21A22A2nAn1An2Ann
称为A的伴随矩阵

A*的第i元素就是A中第i相应元素的代数余子式,注意这里有一个转置的过程!

A*也是n阶方阵

矩阵可逆的充要条件

方阵A可逆的充要条件是 ∣ A ∣ ≠ 0 |A|\neq0 A=0

且当A可逆时, ∣ A − 1 ∣ = 1 ∣ A ∣ , A − 1 = A ∗ ∣ A ∣ |A^{-1}|=\frac{1}{|A|},A^{-1}=\frac{A^*}{|A|} A1=A1,A1=AA

对于n阶方阵A,n>1,恒有 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

|A|=0的矩阵是奇异矩阵;|A|不为0的矩阵是非奇异矩阵;非奇异矩阵和可逆矩阵是同一种矩阵

判断矩阵可逆并求解逆矩阵的步骤

  1. 算|A|
  2. 算A*
  3. 算|A-1|和A-1
  4. 结束

证明矩阵可逆的步骤

  1. 题中没有给多余条件:判断矩阵对应的行列式 ≠ 0 \neq0 =0
  2. 题中给了某些条件:用已知条件构造矩阵X另一矩阵=E

结论:若A为n阶方阵,则|A*|=|A|n-1

可逆矩阵的性质

若A为可逆矩阵,则:

  • A − 1 A^{-1} A1也可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
  • A T A^T AT也可逆,且 ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T
  • 若数 k ≠ 0 k\neq0 k=0,则kA也可逆,且 ( k A ) − 1 = k − 1 A − 1 (kA)^{-1}=k^{-1}A^{-1} (kA)1=k1A1
  • 若A和B是同阶可逆矩阵,则AB也可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
  • 若A1,A2,…,Ak为同阶可逆矩阵,则A1A2…Ak也可逆,且 ( A 1 A 2 . . . A k ) − 1 = A 1 − 1 A 2 − 1 ⋯ A k − 1 (A_1A_2...A_k)^{-1}=A^{-1}_1A^{-1}_2\cdots A_k^{-1} (A1A2...Ak)1=A11A21Ak1
  • 若A可逆,Ak也可逆,且 ( A k ) − 1 = ( A − 1 ) k (A^k)^{-1}=(A^{-1})^k (Ak)1=(A1)k
  • ( A + B ) − 1 = A − 1 + B − 1 (A+B)^{-1}=A^{-1}+B^{-1} (A+B)1=A1+B1

初等行变换法求逆矩阵

前提定理

三种初等矩阵都是可逆矩阵,且其逆矩阵还是同类型的初等矩阵

方阵A可逆的充要条件是A能表示成有限个初等矩阵的乘积

可逆矩阵的等价标准形是单位矩阵

方阵A可逆的充要条件是A与E等价——在矩阵A的左/右端乘可逆矩阵等价于对A进行有限次初等行/列变换

mxn矩阵A与B等价的充要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,使PAQ=B

初等行变换法

根据上述定理,只要能用初等行变换把[A,E]化为[E,B]的形式,B一定是A的逆

一般来说初等行变换求逆矩阵比用伴随矩阵求逆矩阵更方便

推论

[ A C O B ] − 1 = [ A − 1 − A − 1 C B − 1 O B − 1 ] \left[ \begin{array}{cc|cc} A & C\\ O & B\\ \end{array} \right]^{-1}= \left[ \begin{array}{cc|cc} A^{-1} & -A^{-1}CB^{-1}\\ O & B^{-1}\\ \end{array} \right] [AOCB]1=[A1OA1CB1B1]

[ A O O B ] − 1 = [ A − 1 O O B − 1 ] \left[ \begin{array}{cc|cc} A & O\\ O & B\\ \end{array} \right]^{-1}=\left[ \begin{array}{cc|cc} A^{-1} & O\\ O & B^{-1}\\ \end{array} \right] [AOOB]1=[A1OOB1]

[ A O C B ] − 1 = [ A − 1 O − B − 1 C A − 1 B − 1 ] \left[ \begin{array}{cc|cc} A & O\\ C & B\\ \end{array} \right]^{-1}=\left[ \begin{array}{cc|cc} A^{-1} & O\\ -B^{-1}CA^{-1} & B^{-1}\\ \end{array} \right] [ACOB]1=[A1B1CA1OB1]

矩阵方程

矩阵方程的一般形式为AX=C,YB=C和AZB=C,其中A和B可逆,可以求出他们的解为X=A-1C、Y=CB-1、Z=A-1CB-1,也就是求出A-1和B-1就能求出方程的解。若方程不能整理成这三种形式之一,或A、B不可逆,那么需要转化为方程组的形式进行求解。对于这三种形式的方程,可以使用初等行变换求解,步骤如下:

  1. 检查 ∣ A ∣ ≠ 0 |A|\neq 0 A=0 ∣ B ∣ ≠ 0 |B|\neq0 B=0

  2. 将方程转换成标准的三种形式之一

  3. 将方程联立得

$$
[A,C]对应AX=C\

\left[\begin{matrix}
B\
C
\end{matrix}\right]对应YB=C
$$

将整体矩阵的左边/上边变换为单位矩阵,右边/下边就是待求矩阵

  1. 使用初等行变换将原矩阵变换为以下形式:
    [ E , X ] [ E Y ] [E,X]\\ \left[\begin{matrix} E\\ Y \end{matrix}\right] [E,X][EY]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值