四、【智能体】RGA架构、工作流程以及关键组件

RAG和大模型、智能体的关系

大模型(LLM)作为基础技术,提供了强大的语言理解和生成能力,是构建复杂人工智能系统的基石。

RAG可以视为在LLM基础上的扩展或应用,利用LLM的生成能力和外部知识库的丰富信息来提供更准确、信息丰富的输出。

智能体(Agent)可以利用LLM进行自然语言处理,通过RAG技术获得和利用知识,以在更广泛的环境中做出决策和执行任务。

它们通常位于应用层级,是对LLM和RAG技术在特定环境下的集成和应用。

RAG 的架构

在这里插入图片描述

RAG的工作流程

在这里插入图片描述

RAG即**Retrieval-Augmented Generation,**包含 检索、增强和生成3个过程。

检索(Retrieval)

  • 从知识库中搜索与用户问题相关的信息。
  • 通过向量化处理问题和知识,计算相似度进行检索。
  • 关键在于选择合适的模型和数据库,面临大规模数据和问题多样性挑战。

增强(Augment)

  • 将检索到的信息与问题整合,提升生成模型输入质量。
  • 如拼接问题和知识片段,进行筛选等处理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我:yueda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值