RAG和大模型、智能体的关系
大模型(LLM)作为基础技术,提供了强大的语言理解和生成能力,是构建复杂人工智能系统的基石。
RAG可以视为在LLM基础上的扩展或应用,利用LLM的生成能力和外部知识库的丰富信息来提供更准确、信息丰富的输出。
智能体(Agent)可以利用LLM进行自然语言处理,通过RAG技术获得和利用知识,以在更广泛的环境中做出决策和执行任务。
它们通常位于应用层级,是对LLM和RAG技术在特定环境下的集成和应用。
RAG 的架构
RAG的工作流程
RAG即**Retrieval-Augmented Generation,**包含 检索、增强和生成3个过程。
检索(Retrieval):
- 从知识库中搜索与用户问题相关的信息。
- 通过向量化处理问题和知识,计算相似度进行检索。
- 关键在于选择合适的模型和数据库,面临大规模数据和问题多样性挑战。
增强(Augment):
- 将检索到的信息与问题整合,提升生成模型输入质量。
- 如拼接问题和知识片段,进行筛选等处理