基于布鲁斯特效应的模拟计算

这个方法是基于格林函数法,不同于前面的超表面方法需要一个傅里叶变换子块,逆傅里叶变换子块,中间的滤波子块,而是直接通过适当设计沿x轴和y轴的多层板实现数学计算。所有层都是横向同质的,但可以纵向不同质。但格林函数方法有两个主要缺点,一是格林函数需要在空间傅里叶变换域具有偶次对称性,二是相对介电常数和每层的厚度是通过快速合成方法计算的,这将会导致不切实际的数值。

 奇格林函数的功能可以通过旋转装置实现,即通过斜入射实现,在这篇文章中通过使用布鲁斯特效应的界面来解决第二个缺点,从而实现基本的差分。正在研究的系统如下图所示,可以看到通过将装置旋转替代一个垂直射入的情况,然后旋转之后,坐标系就有一个转换。

图2 通过旋转多层板来获得偶对称格林函数

 上式就是讲y方向的波矢在坐标系变换后的转换。相应的格林函数(传递函数)也会有一个转换,转换后的图形如图2所示,可以看到转换后对图像信息的作用和之前是一样的。

下图是他所研究的结构,只由一个界面组成,一个任意波形的光束斜入射到这个自由空间和折射率为n的材料的交界面上,然后由于一阶导数的傅里叶变换是ik,在Ky=0时,Ky'=K0*sin(theta),传递函数必须是0,在进行坐标转换后也是0,但是不管是TE模还是TM模都没有0传递系数,所以本篇文章利用TM模在布鲁斯特角入射时的反射系数是0,利用这一特点实现一阶导数的传递函数。

 将格林函数展开:

 然后第一项=0,然后令n=2.1,布鲁斯特角为64.6°时,代入得到下图所示的格林函数图,绿色的线代表准确的格林函数,橙色的线代表是通过泰勒级数展开的近似,在ky=0附近,近似值还是比较准确的。

然后下图分析了在误差率为不超过10%的情况下的最大带宽与折射率的关系。

总结:使用旋转结构打破反射对称性实现奇格林函数的功能,基于这些旋转配置利用布鲁斯特效应实现对导数空间的微分,然后可以通过级联一阶的微分来实现高阶的微分。

数据集介绍:动物与应急车辆目标检测数据集 一、基础信息 数据集名称:动物与应急车辆目标检测数据集 数据规模: - 训练集:8,292张图片 - 验证集:346张图片 - 测试集:345张图片 - 总计:8,983张标注图片 分类类别: - 救护车(Ambulance):应急医疗车辆识别 - 动物(Animal):通用动物类别检测 - 蚂蚁(Ant):小型昆虫识别 - 羚羊(Antelope):草原动物检测 标注格式: YOLO格式标注,支持目标检测任务,含归一化坐标和类别编码 二、适用场景 野生动物监测系统: 支持自然保护区构建动物分布监测系统,识别羚羊等特定物种活动轨迹 应急车辆识别系统: 适用于智能交通管理系统开发,实现救护车等应急车辆的快速识别 生物多样性研究: 提供蚂蚁等昆虫类别的检测数据,支持生态学研究中的物种分布分析 农业监控应用: 适用于害虫监测场景,帮助识别田间蚂蚁等昆虫的分布密度 三、数据集优势 多场景覆盖: 同时包含野生动物(羚羊)、常见动物(通用动物)和特殊车辆(救护车)检测目标 精细分类体系: 区分通用动物与特定物种(蚂蚁/羚羊),支持不同粒度的检测需求 工业级数据规模: 超8,000张训练样本,满足深度学习模型的训练需求 任务适配性强: 原生YOLO格式标注可直接应用于主流目标检测框架(YOLOv5/v8等) 跨领域应用: 同时支持自然环境保护、城市交通管理和农业监测等多领域应用场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值