欧拉角与旋转矩阵的转换
将欧拉角(绕 Z、Y、X 轴的旋转顺序)转换为旋转矩阵的基本步骤包括按以下顺序进行三个旋转:首先绕 Z 轴旋转,然后绕 Y 轴旋转,最后绕 X 轴旋转。每个旋转都由对应的旋转矩阵表示,而最终的旋转矩阵是这三个矩阵的乘积。
1. 绕 Z 轴的旋转矩阵 R z ( θ z ) R_z(\theta_z) Rz(θz)
绕 Z 轴旋转的旋转矩阵为:
R z ( θ z ) = [ cos ( θ z ) − sin ( θ z ) 0 sin ( θ z ) cos ( θ z ) 0 0 0 1 ] R_z(\theta_z) = \begin{bmatrix} \cos(\theta_z) & -\sin(\theta_z) & 0 \\ \sin(\theta_z) & \cos(\theta_z) & 0 \\ 0 & 0 & 1 \end{bmatrix} Rz(θz)= cos(θz)sin(θz)0−sin(θz)cos(θz)0001
2. 绕 Y 轴的旋转矩阵 R y ( θ y ) R_y(\theta_y) Ry(θy)
绕 Y 轴旋转的旋转矩阵为:
R y ( θ y ) = [ cos ( θ y ) 0 sin ( θ y ) 0 1 0 − sin ( θ y ) 0 cos ( θ y ) ] R_y(\theta_y) = \begin{bmatrix} \cos(\theta_y) & 0 & \sin(\theta_y) \\ 0 & 1 & 0 \\ -\sin(\theta_y) & 0 & \cos(\theta_y) \end{bmatrix} Ry(θy)= cos(θy)0−sin(θy)010sin(θy)0cos(θy)
3. 绕 X 轴的旋转矩阵 R x ( θ x ) R_x(\theta_x) Rx(θx)
绕 X 轴旋转的旋转矩阵为:
R x ( θ x ) = [ 1 0 0 0 cos ( θ x ) − sin ( θ x ) 0 sin ( θ x ) cos ( θ x ) ] R_x(\theta_x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & -\sin(\theta_x) \\ 0 & \sin(\theta_x) & \cos(\theta_x) \end{bmatrix} Rx(θx)= 1000cos(θx)sin(θx)0−sin(θx)cos(θx)
4. 合成旋转矩阵
当旋转顺序是 绕 Z、Y、X 轴 时,最终的旋转矩阵 $R $是三个旋转矩阵的乘积,按顺序乘:
R = R z ( θ z ) ⋅ R y ( θ y ) ⋅ R x ( θ x ) R = R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x) R=Rz(θz)⋅Ry(θy)⋅Rx(θx)
这意味着:
R = [ cos ( θ z ) − sin ( θ z ) 0 sin ( θ z ) cos ( θ z ) 0 0 0 1 ] ⋅ [ cos ( θ y ) 0 sin ( θ y ) 0 1 0 − sin ( θ y ) 0 cos ( θ y ) ] ⋅ [ 1 0 0 0 cos ( θ x ) − sin ( θ x ) 0 sin ( θ x ) cos ( θ x ) ] R = \begin{bmatrix} \cos(\theta_z) & -\sin(\theta_z) & 0 \\ \sin(\theta_z) & \cos(\theta_z) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta_y) & 0 & \sin(\theta_y) \\ 0 & 1 & 0 \\ -\sin(\theta_y) & 0 & \cos(\theta_y) \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & -\sin(\theta_x) \\ 0 & \sin(\theta_x) & \cos(\theta_x) \end{bmatrix} R= cos(θz)sin(θz)0−sin(θz)cos(θz)0001 ⋅ cos(θy)0−sin(θy)010sin(θy)0cos(θy) ⋅ 1000cos(θx)sin(θx)0−sin(θx)cos(θx)
5. 结果
通过矩阵乘法可以得到最终的旋转矩阵。具体地:
R = [ cos ( θ z ) cos ( θ y ) cos ( θ z ) sin ( θ y ) sin ( θ x ) − sin ( θ z ) cos ( θ x ) cos ( θ z ) sin ( θ y ) cos ( θ x ) + sin ( θ z ) sin ( θ x ) sin ( θ z ) cos ( θ y ) sin ( θ z ) sin ( θ y ) sin ( θ x ) + cos ( θ z ) cos ( θ x ) sin ( θ z ) sin ( θ y ) cos ( θ x ) − cos ( θ z ) sin ( θ x ) − sin ( θ y ) cos ( θ y ) sin ( θ x ) cos ( θ y ) cos ( θ x ) ] R = \begin{bmatrix} \cos(\theta_z)\cos(\theta_y) & \cos(\theta_z)\sin(\theta_y)\sin(\theta_x) - \sin(\theta_z)\cos(\theta_x) & \cos(\theta_z)\sin(\theta_y)\cos(\theta_x) + \sin(\theta_z)\sin(\theta_x) \\ \sin(\theta_z)\cos(\theta_y) & \sin(\theta_z)\sin(\theta_y)\sin(\theta_x) + \cos(\theta_z)\cos(\theta_x) & \sin(\theta_z)\sin(\theta_y)\cos(\theta_x) - \cos(\theta_z)\sin(\theta_x) \\ -\sin(\theta_y) & \cos(\theta_y)\sin(\theta_x) & \cos(\theta_y)\cos(\theta_x) \end{bmatrix} R= cos(θz)cos(θy)sin(θz)cos(θy)−sin(θy)cos(θz)sin(θy)sin(θx)−sin(θz)cos(θx)sin(θz)sin(θy)sin(θx)+cos(θz)cos(θx)cos(θy)sin(θx)cos(θz)sin(θy)cos(θx)+sin(θz)sin(θx)sin(θz)sin(θy)cos(θx)−cos(θz)sin(θx)cos(θy)cos(θx)
这就是绕 Z、Y、X 轴旋转的旋转矩阵。
C# 实现
假设 Rin
是一个包含三个旋转角度 RX
, RY
, RZ
的结构体或类,表示绕 X、Y 和 Z 轴的欧拉角。您可以使用以下代码来计算旋转矩阵:
using MathNet.Numerics.LinearAlgebra;
public static Matrix RPY2Matrix(Rotational Rin)
{
// 计算三角函数值
double cosX = Math.Cos(Rin.RX);
double sinX = Math.Sin(Rin.RX);
double cosY = Math.Cos(Rin.RY);
double sinY = Math.Sin(Rin.RY);
double cosZ = Math.Cos(Rin.RZ);
double sinZ = Math.Sin(Rin.RZ);
// 绕 Z 轴的旋转矩阵
double r11 = cosZ * cosY;
double r12 = cosZ * sinY * sinX - sinZ * cosX;
double r13 = cosZ * sinY * cosX + sinZ * sinX;
// 绕 Y 轴的旋转矩阵
double r21 = sinZ * cosY;
double r22 = sinZ * sinY * sinX + cosZ * cosX;
double r23 = sinZ * sinY * cosX - cosZ * sinX;
// 绕 X 轴的旋转矩阵
double r31 = -sinY;
double r32 = cosY * sinX;
double r33 = cosY * cosX;
// 返回旋转矩阵
return DenseMatrix.OfArray(new double[3, 3]
{
{ r11, r12, r13 },
{ r21, r22, r23 },
{ r31, r32, r33 }
});
}
解释
- 输入:
Rin
是一个包含三个角度的对象:RX
,RY
,RZ
,分别表示绕 X、Y 和 Z 轴的旋转。 - 计算三角函数:使用
Math.Cos
和Math.Sin
计算每个角度的三角函数值。 - 构建旋转矩阵:根据前面提到的公式,计算每个元素的值。
- 返回旋转矩阵:使用
DenseMatrix.OfArray
构造并返回旋转矩阵。
总结
这段代码实现了绕 Z、Y、X 轴的欧拉角旋转矩阵转换。最终的旋转矩阵将允许您将一个物体根据给定的欧拉角进行旋转。如果旋转顺序不同(例如 X-Y-Z 或其他顺序),则旋转矩阵的构造方式会有所不同,您需要调整相应的顺序。