欧拉角与旋转矩阵的转换

欧拉角与旋转矩阵的转换

将欧拉角(绕 Z、Y、X 轴的旋转顺序)转换为旋转矩阵的基本步骤包括按以下顺序进行三个旋转:首先绕 Z 轴旋转,然后绕 Y 轴旋转,最后绕 X 轴旋转。每个旋转都由对应的旋转矩阵表示,而最终的旋转矩阵是这三个矩阵的乘积。

1. 绕 Z 轴的旋转矩阵 R z ( θ z ) R_z(\theta_z) Rz(θz)

绕 Z 轴旋转的旋转矩阵为:

R z ( θ z ) = [ cos ⁡ ( θ z ) − sin ⁡ ( θ z ) 0 sin ⁡ ( θ z ) cos ⁡ ( θ z ) 0 0 0 1 ] R_z(\theta_z) = \begin{bmatrix} \cos(\theta_z) & -\sin(\theta_z) & 0 \\ \sin(\theta_z) & \cos(\theta_z) & 0 \\ 0 & 0 & 1 \end{bmatrix} Rz(θz)= cos(θz)sin(θz)0sin(θz)cos(θz)0001

2. 绕 Y 轴的旋转矩阵 R y ( θ y ) R_y(\theta_y) Ry(θy)

绕 Y 轴旋转的旋转矩阵为:

R y ( θ y ) = [ cos ⁡ ( θ y ) 0 sin ⁡ ( θ y ) 0 1 0 − sin ⁡ ( θ y ) 0 cos ⁡ ( θ y ) ] R_y(\theta_y) = \begin{bmatrix} \cos(\theta_y) & 0 & \sin(\theta_y) \\ 0 & 1 & 0 \\ -\sin(\theta_y) & 0 & \cos(\theta_y) \end{bmatrix} Ry(θy)= cos(θy)0sin(θy)010sin(θy)0cos(θy)

3. 绕 X 轴的旋转矩阵 R x ( θ x ) R_x(\theta_x) Rx(θx)

绕 X 轴旋转的旋转矩阵为:

R x ( θ x ) = [ 1 0 0 0 cos ⁡ ( θ x ) − sin ⁡ ( θ x ) 0 sin ⁡ ( θ x ) cos ⁡ ( θ x ) ] R_x(\theta_x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & -\sin(\theta_x) \\ 0 & \sin(\theta_x) & \cos(\theta_x) \end{bmatrix} Rx(θx)= 1000cos(θx)sin(θx)0sin(θx)cos(θx)

4. 合成旋转矩阵

当旋转顺序是 绕 Z、Y、X 轴 时,最终的旋转矩阵 $R $是三个旋转矩阵的乘积,按顺序乘:

R = R z ( θ z ) ⋅ R y ( θ y ) ⋅ R x ( θ x ) R = R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x) R=Rz(θz)Ry(θy)Rx(θx)

这意味着:

R = [ cos ⁡ ( θ z ) − sin ⁡ ( θ z ) 0 sin ⁡ ( θ z ) cos ⁡ ( θ z ) 0 0 0 1 ] ⋅ [ cos ⁡ ( θ y ) 0 sin ⁡ ( θ y ) 0 1 0 − sin ⁡ ( θ y ) 0 cos ⁡ ( θ y ) ] ⋅ [ 1 0 0 0 cos ⁡ ( θ x ) − sin ⁡ ( θ x ) 0 sin ⁡ ( θ x ) cos ⁡ ( θ x ) ] R = \begin{bmatrix} \cos(\theta_z) & -\sin(\theta_z) & 0 \\ \sin(\theta_z) & \cos(\theta_z) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta_y) & 0 & \sin(\theta_y) \\ 0 & 1 & 0 \\ -\sin(\theta_y) & 0 & \cos(\theta_y) \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & -\sin(\theta_x) \\ 0 & \sin(\theta_x) & \cos(\theta_x) \end{bmatrix} R= cos(θz)sin(θz)0sin(θz)cos(θz)0001 cos(θy)0sin(θy)010sin(θy)0cos(θy) 1000cos(θx)sin(θx)0sin(θx)cos(θx)

5. 结果

通过矩阵乘法可以得到最终的旋转矩阵。具体地:

R = [ cos ⁡ ( θ z ) cos ⁡ ( θ y ) cos ⁡ ( θ z ) sin ⁡ ( θ y ) sin ⁡ ( θ x ) − sin ⁡ ( θ z ) cos ⁡ ( θ x ) cos ⁡ ( θ z ) sin ⁡ ( θ y ) cos ⁡ ( θ x ) + sin ⁡ ( θ z ) sin ⁡ ( θ x ) sin ⁡ ( θ z ) cos ⁡ ( θ y ) sin ⁡ ( θ z ) sin ⁡ ( θ y ) sin ⁡ ( θ x ) + cos ⁡ ( θ z ) cos ⁡ ( θ x ) sin ⁡ ( θ z ) sin ⁡ ( θ y ) cos ⁡ ( θ x ) − cos ⁡ ( θ z ) sin ⁡ ( θ x ) − sin ⁡ ( θ y ) cos ⁡ ( θ y ) sin ⁡ ( θ x ) cos ⁡ ( θ y ) cos ⁡ ( θ x ) ] R = \begin{bmatrix} \cos(\theta_z)\cos(\theta_y) & \cos(\theta_z)\sin(\theta_y)\sin(\theta_x) - \sin(\theta_z)\cos(\theta_x) & \cos(\theta_z)\sin(\theta_y)\cos(\theta_x) + \sin(\theta_z)\sin(\theta_x) \\ \sin(\theta_z)\cos(\theta_y) & \sin(\theta_z)\sin(\theta_y)\sin(\theta_x) + \cos(\theta_z)\cos(\theta_x) & \sin(\theta_z)\sin(\theta_y)\cos(\theta_x) - \cos(\theta_z)\sin(\theta_x) \\ -\sin(\theta_y) & \cos(\theta_y)\sin(\theta_x) & \cos(\theta_y)\cos(\theta_x) \end{bmatrix} R= cos(θz)cos(θy)sin(θz)cos(θy)sin(θy)cos(θz)sin(θy)sin(θx)sin(θz)cos(θx)sin(θz)sin(θy)sin(θx)+cos(θz)cos(θx)cos(θy)sin(θx)cos(θz)sin(θy)cos(θx)+sin(θz)sin(θx)sin(θz)sin(θy)cos(θx)cos(θz)sin(θx)cos(θy)cos(θx)

这就是绕 Z、Y、X 轴旋转的旋转矩阵。

C# 实现

假设 Rin 是一个包含三个旋转角度 RX, RY, RZ 的结构体或类,表示绕 X、Y 和 Z 轴的欧拉角。您可以使用以下代码来计算旋转矩阵:

using MathNet.Numerics.LinearAlgebra;

public static Matrix RPY2Matrix(Rotational Rin)
{
    // 计算三角函数值
    double cosX = Math.Cos(Rin.RX);
    double sinX = Math.Sin(Rin.RX);
    double cosY = Math.Cos(Rin.RY);
    double sinY = Math.Sin(Rin.RY);
    double cosZ = Math.Cos(Rin.RZ);
    double sinZ = Math.Sin(Rin.RZ);

    // 绕 Z 轴的旋转矩阵
    double r11 = cosZ * cosY;
    double r12 = cosZ * sinY * sinX - sinZ * cosX;
    double r13 = cosZ * sinY * cosX + sinZ * sinX;

    // 绕 Y 轴的旋转矩阵
    double r21 = sinZ * cosY;
    double r22 = sinZ * sinY * sinX + cosZ * cosX;
    double r23 = sinZ * sinY * cosX - cosZ * sinX;

    // 绕 X 轴的旋转矩阵
    double r31 = -sinY;
    double r32 = cosY * sinX;
    double r33 = cosY * cosX;

    // 返回旋转矩阵
    return DenseMatrix.OfArray(new double[3, 3]
    {
        { r11, r12, r13 },
        { r21, r22, r23 },
        { r31, r32, r33 }
    });
}

解释

  1. 输入Rin 是一个包含三个角度的对象:RX, RY, RZ,分别表示绕 X、Y 和 Z 轴的旋转。
  2. 计算三角函数:使用 Math.CosMath.Sin 计算每个角度的三角函数值。
  3. 构建旋转矩阵:根据前面提到的公式,计算每个元素的值。
  4. 返回旋转矩阵:使用 DenseMatrix.OfArray 构造并返回旋转矩阵。

总结

这段代码实现了绕 Z、Y、X 轴的欧拉角旋转矩阵转换。最终的旋转矩阵将允许您将一个物体根据给定的欧拉角进行旋转。如果旋转顺序不同(例如 X-Y-Z 或其他顺序),则旋转矩阵的构造方式会有所不同,您需要调整相应的顺序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值