2021李宏毅机器学习课程笔记——Explainable AI

注:这个是笔者用于期末复习的一个简单笔记,因此难以做到全面详细,有疑问欢迎大家在评论区讨论
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/xai_v4.pptx

I. Interpretable v.s. Powerful

从某种程度来讲,可解释性与模型性能是不可兼得的。比方说,线性模型是可解释的(直接看特征的权重),但是性能有限;深度模型不可解释,但是性能很强。

从目前的现状看,大部分人还是会选择性能更强的模型,而去牺牲一些可解释性。实际上的话,大脑的工作原理我们也不清楚,但我们在许多情况下依然是可以去信任人类的决策。

II. Local Explanation

通过标记出图像中模型认为"重要的"部分,从而侧面反映出模型的决策依据:
在这里插入图片描述
例如,如果模型认为图像中的耳朵,爪子,眼睛(而不是背景物件)比较重要,那么我们确实可以去相信判断这张图像是猫是有依据的。

落实到具体实现上的话,我们可以搞个滑动窗口,每次都去遮住图像中的某一块。如果遮到某个位置后对模型的决策有较大影响的话,我们就可以认为该部分是模型认为重要的部分;另一种思路类似,只不过不是遮掉某一块,而是对某一块的像素进行扰动,观察对哪些像素进行扰动会对模型结果产生较大影响,从而分析出模型认为重要的部分(注:这种思路可以得到一张Saliency Map)。

需要注意的是,对于上面我们所提到的"扰动像素"方法,存在一个比较大的问题,即"梯度并不总是能反映重要性",由于梯度饱和的存在:
在这里插入图片描述

III. Global Explanation

这种思路更直观一些。比方说,模型能够识别一只猫,那么我们可以试图去让模型自己构造出其心目中"理想"猫的样子。具体的做法则与对抗攻击十分类似了,固定模型的参数,利用梯度反传去构造图像,唯一的一点不同在于我们这里要求构造的图像应尽可能像现实图像(不然最后生成的结果极大概率是一坨噪声):
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值