Yolov5-OpenCV-Cpp-Python-ROS
代码地址
使用OpenCV 4.5.4推理YOLOv5模型,分别使用C++,Python和ROS实现。
基于yolov5-opencv-cpp-python修改。
在原代码的基础上使用CMake编译(能够更方便的定义程序路径),并且加入了对ROS传入图片的支持。
代码解释
- 变量net_path定义了onnx网络模型路径.
- 变量 class_path定义了分类文件的路径.
- ROS节点订阅**/image**话题来获取输入图像.
NOTE: The code depends on the output dimension of your network model, which means the variables dimensions and rows in ros.cpp should be the exact same size of output dimensions.
注意: 网络推理的计算取决于网络模型的输出维度, 也就是说ros.cpp中的变量dimensions and rows应该与其一致.
环境配置
- 任何Linux OS (在Ubuntu 18.04上测试)
- OpenCV 4.5.4+
- Python 3.7+(可选)
- GCC 9.0+(可选)
- ROS melodic(可选)
注意!!! 先于4.5.4的OpenCV版本不会正常运行。
使用ROS/C++推理
C++/ROS代码在Yolo_ROS/ros.cpp。
git clone https://github.com/YellowAndGreen/Yolov5-OpenCV-Cpp-Python-ROS.git
cd Yolov5-OpenCV-Cpp-Python-ROS/Yolo_ROS
mkdir build && cd

该资源详细介绍了如何使用OpenCV4.5.4结合YOLOv5模型进行物体检测,提供了C++、Python和ROS三种实现方式。代码已针对CMake构建优化,并支持ROS图像话题订阅。环境要求包括OpenCV4.5.4+、Python3.7+以及ROSmelodic。通过提供的步骤可以将YOLOv5模型转换为ONNX格式,并在不同环境下进行推理。
最低0.47元/天 解锁文章
1647

被折叠的 条评论
为什么被折叠?



