一、目标检测
yolo v4的related work部分精简的介绍了目标检测部分。
目标检测大概分为one-stage和two-stage部分。其中two-stage部分主要包括R-CNN系列。one-stage则包括anchor-based和anchor-free两类方法。其中anchor-based包括已经成熟应用的SSD和Yolo各系列,以及RetinaNet(效果较好,训练时间相对较长);anchor-free的方法则包括CenterNet和FCOS,两类方法主要从Anchor、Loss和正负样本来区分。
二、数据集
VOC(镜像下载)包括20种类型,训练数据大概15k,测试训练大概4.99k。
COCO包括80种类型
三、数据增强
[1] Kisantal M , Wojna Z , Murawski J , et al. Augmentation for small object detection[J]. 2019.
数据增强在图像分类中应用广泛,但在目标检测中使用较少。实验结果显示:一个学习过的数据增强策略是优于规则化的目标检测方法。
[2] Zoph B , Cubuk E D , Ghiasi G , et al. Learning Data Augmentation Strategies for Object Detection[J]. 2019.
[3] Shorten C , Khoshgoftaar T M . A survey on Image Data Augmentation for Deep Learning[J]. Journal of Big Data, 2019, 6(1):1-48.
https://zhuanlan.zhihu.com/p/57760020
https://zhuanlan.zhihu.com/p/71231560
https://blog.csdn.net/qq_24548569/article/details/105008150