【目标检测】数据增强

一、目标检测

yolo v4的related work部分精简的介绍了目标检测部分。

目标检测大概分为one-stage和two-stage部分。其中two-stage部分主要包括R-CNN系列。one-stage则包括anchor-based和anchor-free两类方法。其中anchor-based包括已经成熟应用的SSD和Yolo各系列,以及RetinaNet(效果较好,训练时间相对较长);anchor-free的方法则包括CenterNet和FCOS,两类方法主要从Anchor、Loss和正负样本来区分。

 

二、数据集

VOC(镜像下载)包括20种类型,训练数据大概15k,测试训练大概4.99k。

COCO包括80种类型

 

三、数据增强

[1] Kisantal M , Wojna Z , Murawski J , et al. Augmentation for small object detection[J]. 2019.

数据增强在图像分类中应用广泛,但在目标检测中使用较少。实验结果显示:一个学习过的数据增强策略是优于规则化的目标检测方法。

[2] Zoph B , Cubuk E D , Ghiasi G , et al. Learning Data Augmentation Strategies for Object Detection[J]. 2019.

[3] Shorten C , Khoshgoftaar T M . A survey on Image Data Augmentation for Deep Learning[J]. Journal of Big Data, 2019, 6(1):1-48.

https://zhuanlan.zhihu.com/p/57760020

https://zhuanlan.zhihu.com/p/71231560

https://blog.csdn.net/qq_24548569/article/details/105008150

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值