BCI脑机接口6:源信号的处理方法(特征提取)

f、信号的处理方法:

BCI系统中的信号处理包括(信号采集、)信号预处理特征提取识别分类(、设备控制)等过程
传统的脑电信号分析方法是对信号进行多次检测并进行均值滤波,再用统计学的方法寻找EEG的变化规律。这种方法信息传输率低,也不能满足实时控制的需求。目前对EEG 信号的处理一般采用对单次训练信号进行研究。其中特征提取和识别分类是 BCI 信号处理最为关键的环节。

①、BCI中的特征提取方法:

特征提取就是以特征信号(一般是EEG得到的脑电信号)作为源信号,确定各种参数并以此为向量组成表征信号特征的特征向量。
特征参数包括时域信号(如幅值)和频域信号(如频率)两大类,相应的特征提取方法也分为时域法、频域法和时-频域方法。

时域法:

时域分析包括过零点分析、直方图分析、方差分析、相关分析、峰值检测及波形参数分析、相干平均、波形识别等,通过时域分析直接提取波形特征参数,然后将这些参数用于EEG的分类、识别、跟踪和瞬态分析。时域法特征提取方式是将特定的滤波方法与采样方式相结合,去除EEG信号中的时域噪声,提高信号的信噪比。其中,提取最多的是幅值特征和幅值能量特征。常用的滤波方法有带通滤波、拉普拉斯滤波、全导联平均参考法、卡尔曼滤波、移动平均滤波等。此外,连续或离散小波变换也常用于提取EEG信号的时变特征。

频域法:

EEG信号处理中常用的频域法有功率谱估计和参数模型法。功率谱估计是一种能够反映信号频率成分及相对强弱的频域分析方法࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值