WWW22 :SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation

介绍

GNN—标签资源时间监督 ------ GCL受关注(MI),GraphCL 4种增强对于不同领域是不一样的,比如丢弃边对于社交网络ok,但是可能改变分子结构中的语义。 JOAO 是自动选择合适的参数和aug方法,但是还需要人为的定义aug池,并且搜索计算上复杂。如何不通过 试错(trial and error)或者 昂贵的领域知识进行图对比学习?

本文不是设计aug的方式,而是graph输入到encoder和一个perturbed的encoder 形成两个视角。这两个作为正样本对,随机的另外一个图,作为负样本。 同时本文提出了一个AT-SimGrace来增强鲁棒性
graphcl的aug会破坏语义,mocl虽然不破坏 但是需要昂贵的领域知识
在这里插入图片描述

相关工作

介绍预测式的GSSL。本文是基于对比的。

方法

3.1 SimGrace

3.1.1. encoder perturbation

采用从高斯分布采样的0均值,方差的噪声来对encoder的参数进行 干扰
在这里插入图片描述
这里作者说了 MERIT+BGRL也采用online+target。但1). 他们都是动量更新的。2)且都需要数据增强。 3)本文关注于graph-level

3.1.2 . Projection head

2层MLP

3.1.3. 对比损失

采用NT-Xent。 温度归一化交叉熵
这里负样本的选取是 选择当前batch图其余N-1个。
在这里插入图片描述

3.2 为什么表现好

这里 借用了 CV那篇对比学习分析的文章,计算 uniform(所有样本对之间距离平均高斯指数)+align(正样本对距离)
simGRACE align小 表明正样本对更近 uniform越小,表明 样本分布越均匀
在这里插入图片描述
在这里插入图片描述

3.3 AT-SimGRAC

GraphCL对于random攻击比较鲁棒,但是他没有解释,并且不能应对对抗攻击。本文利用对抗训练AT来提高SimGRACE的对抗鲁棒性。通过将对抗样本包含到训练过程,目标如下:x‘是对抗样本,损失是交叉熵。
在这里插入图片描述
直接采用存在的问题: 1.图对比没有标签 2.对抗训练昂贵。
为了解决,本文采用infonce替换了交叉熵。 同时不采用对抗生成样本,而是通过对抗的方式perture encoder
在这里插入图片描述

实验

感兴趣可以去看原文~
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值