2. 波动方程

在上半空间Rn×[0,∞)中研究波动方程的初值问题,通过线性叠加原理将问题分解。定理1.1阐述了解u的表达式,其中u1和u3可通过u2(定解问题(1.3)的解)来表示。解u1由u2的时间导数给出,解u3由u2和源项的积分表示。" 127231606,10772516,Go语言实现菱形打印,"['Golang', '后端开发']
摘要由CSDN通过智能技术生成

基本方程

1. 初值问题方程化简

在上半空间 R n × [ 0 , ∞ ) R^n\times[0,\infty) Rn×[0,) 考虑波动方程的初值问题
在这里插入图片描述
ϕ ψ \phi \psi ϕψ
由于方程为线性的,将方程一分为三,使得每个定解问题中 方程和两个初值条件 中只有一个是非齐次的,即:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
由线性叠加原理,初值问题 ( 1.1 ) (1.1) (1.1) 的解 u u u 可以表示为在这里插入图片描述
定解问题 ( 1.3 ) (1.3) (1.3) 是基本的,其它两个方程 ( 1.2 ) ( 1.4 ) (1.2)(1.4) (1.2)(1.4) 的解可由其线性表出,定理如下:

定理1.1

u 2 = M ϕ ( x 1 , x 2 , ⋯   , x m , t ) u_2=\Mu_\phi(x_1,x_2,\cdots,x_m,t) u2=Mϕ(x1,x2,,xm,t) (以 ϕ \phi ϕ 为初值问题是定解问题 ( 1.3 ) (1.3) (1.3) 的解)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值