基本方程
1. 初值问题方程化简
在上半空间 R n × [ 0 , ∞ ) R^n\times[0,\infty) Rn×[0,∞) 考虑波动方程的初值问题
ϕ ψ \phi \psi ϕψ
由于方程为线性的,将方程一分为三,使得每个定解问题中 方程和两个初值条件 中只有一个是非齐次的,即:
由线性叠加原理,初值问题 ( 1.1 ) (1.1) (1.1) 的解 u u u 可以表示为
定解问题 ( 1.3 ) (1.3) (1.3) 是基本的,其它两个方程 ( 1.2 ) ( 1.4 ) (1.2)(1.4) (1.2)(1.4) 的解可由其线性表出,定理如下:
定理1.1
设 u 2 = M ϕ ( x 1 , x 2 , ⋯ , x m , t ) u_2=\Mu_\phi(x_1,x_2,\cdots,x_m,t) u2=Mϕ(x1,x2,⋯,xm,t) (以 ϕ \phi ϕ 为初值问题是定解问题 ( 1.3 ) (1.3) (1.3) 的解)