智能计算系统笔记——第三章深度学习(3.3基于卷积神经网络的图像目标检测算法)

本文介绍了基于卷积神经网络的图像目标检测算法,包括R-CNN系列、YOLO系列及SSD等。详细阐述了两阶段算法和一阶段算法的区别,并讨论了mAP等评价指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

智能计算系统笔记——第三章深度学习

参考:《智能计算系统》陈云霁,李玲,李威,郭崎,杜子东[著]

3.3基于卷积神经网络的图像目标检测算法

经典的目标检测算法模型有R-CNN系列、YOLO系列、SSD等。
目前,目标检测算法主要分为两大类:
(1)两阶段算法基于候选区域方法,先产生边框把物体框出,后用CNN对每个候选区域进行分类,其代表是R-CNN系列算法。
(2)一阶段算法对输入图像直接处理,同时输出物体定位及其类别,即框出物体的同时对物体进行分类,其代表是YOLO系列及SSD算法。

3.3.1评价指标

一般多物体检测时,通常用mAP(mean Average Precision)来衡量。
在这里插入图片描述
平均精度AP的计算过程:
假设100张图像为测试集,共5种类别,其中有25个事先人为标记为类别A的框。假设算法在100张测试图像中共检测出20个分类为A的候选框,各候选框的置信度用交并比(IoU)来度量。标签为0表示框内无物体,标签为1表示框内有物体。
(1)首先,根据置信度对检测出的候选框降序排列;
(2)按照置信度降序,依次计算只有N个正例时的recall和precision;
(3)对于每个recall对应的最大precision作为recall的对应precision;
(4)计算recall-precision曲线面积作为平均精度AP。
(5)最后,测试集中C种类别的检测的平均精度均值mAP为每个种类AP的平均。
在这里插入图片描述

3.3.2 R-CNN(Regions with CNN features)系列

(1)R-CNN
在这里插入图片描述
在这里插入图片描述
(2)Fast R-CNN
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(3)Faster R-CNN
在这里插入图片描述
在这里插入图片描述

3.3.3 YOLO(You Only Look Once)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3.4 SSD(Single Shot Detector)

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值