YOLOX、YOLOv5、Nanodet在PC与嵌入式板Atlas200DK上的推理速度测试

前言

Nanodet和YOLOv5都是我很喜欢的检测算法,Nanodet超轻量对嵌入式设备极其友好,u版yolo训练起来速度快效果好,功能强大

前两天旷视开源了YOLOX,我看了一下算法大体和代码实现,总的来讲还是比较有新意,去掉了anchors,有点融合FCOS的意思,不过纸面上的mAP比yolov5的p6系列还是有一定差距的
不过YOLOX代码写的真不错,比u版yolo简洁多了。

以下测试均在python中完成

PC上的模型推理速度(已更新全部模型)

mAP我就不比了,这几个算法在原repo里都有coco数据集上的精度测试结果

PC配置:CPU:i7-10875H GPU:RTX2070super Max-Q

YOLOXYOLOv5Nanodet仓库里的模型,对30张图片进行测速,取均值

model size pytorch onnx
YOLOXnano 416x416 63.5ms 14.9ms (27.1ms opencv)
YOLOXtiny
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值