前言
Nanodet和YOLOv5都是我很喜欢的检测算法,Nanodet超轻量对嵌入式设备极其友好,u版yolo训练起来速度快效果好,功能强大
前两天旷视开源了YOLOX,我看了一下算法大体和代码实现,总的来讲还是比较有新意,去掉了anchors,有点融合FCOS的意思,不过纸面上的mAP比yolov5的p6系列还是有一定差距的
不过YOLOX代码写的真不错,比u版yolo简洁多了。
以下测试均在python中完成
PC上的模型推理速度(已更新全部模型)
mAP我就不比了,这几个算法在原repo里都有coco数据集上的精度测试结果
PC配置:CPU:i7-10875H GPU:RTX2070super Max-Q
将YOLOX、YOLOv5、Nanodet仓库里的模型,对30张图片进行测速,取均值
model | size | pytorch | onnx |
---|---|---|---|
YOLOXnano | 416x416 | 63.5ms | 14.9ms (27.1ms opencv) |
YOLOXtiny |