数值计算之 最小二乘法(3)最小二乘的矩阵解法

本文详细探讨了最小二乘法的矩阵形式,包括Cholesky分解、QR分解和SVD在不同情况下的应用,涵盖了超定和欠定方程组的解法。重点在于理解线性方程组的列满秩、亏秩条件下的解求技巧。

前言

之前将最小二乘法与线性方程组求解关联,得到了线性最小二乘的矩阵形式,以及线性最小二乘的几何意义。

本篇将介绍线性最小二乘的矩阵解法。

回顾最小二乘的线性解

对于线性超定方程组 A x = b , A ∈ R m × n , m > n Ax=b,A\in R^{m\times n},m>n Ax=b,ARm×n,m>n,其最小二乘解可表示为:
arg min ⁡ x ∣ ∣ A x − b ∣ ∣ 2 2 = arg min ⁡ x ( A x − b ) T ( A x − b ) → A T A x = A T b i f r a n k ( A ) = n , x = ( A T A ) − 1 A T b \argmin_x ||Ax-b||^2_2=\argmin_x (Ax-b)^T(Ax-b) \\ \to A^TAx=A^Tb \\ \quad \\ if \quad rank(A)=n, x=(A^TA)^{-1}A^Tb xargminAxb22=xargmin(Axb)T(Axb)ATAx=ATbifrank(A)=n,x=(ATA)1ATb

以上解法具有两个问题:① A T A A^TA ATA求逆运算的效率;② r a n k ( A ) < n rank(A)<n rank(A)<n时的最小二乘解。

首先讨论问题①。

列满秩矩阵的最小二乘解法

对于线性方程组 A x = b , A ∈ R m × n , m > n , r a n k ( A ) = n Ax=b,A\in R^{m\times n},m>n,rank(A)=n Ax=b,ARm×n,m>n,rank(A)=n,有 A T A A^TA ATA对称且可逆。回顾矩阵分解的知识,可知 A T A A^TA ATA矩阵能够进行Cholesky分解和QR分解。

Cholesky分解求线性最小二乘解

通过将 A T A A^TA ATA分解为下三角矩阵 L L L的乘积 L L T LL^T LLT
A T A = L L T A^TA=LL^T ATA=LLT
则可以将复杂的线性方程组求解:
A T A x = A T b A^TAx=A^Tb ATAx=ATb
转化为两个简单的三角线性方程组求解:
L L T x = A T b → L T x = y , L y = A T b LL^Tx=A^Tb \to L^Tx=y, Ly=A^Tb LLTx=ATbLTx=y,Ly=ATb

Cholesky分解速度很快,但精度一般,稳定性差。适合在限定时间内的大规模超定线性方程计算求解。

QR分解求线性最小二乘解

对于列满秩矩阵 A A A而言,可以唯一分解为正交矩阵与对角元为正的上三角矩阵的乘积:
A = Q R = Q [ R 0 ] A=QR=Q\begin{bmatrix} R \\ 0 \end{bmatrix} A=QR=Q[R0]
现在考虑最小二乘法的QR分解法:
arg min ⁡ x ∣ ∣ A x − b ∣ ∣ 2 2 = arg min ⁡ x ∣ ∣ Q [ R 0 ] x − b ∣ ∣ = arg min ⁡ x ∣ ∣ [ R 0 ] x − Q T b ∣ ∣ 2 2 = arg min ⁡ x ∣ ∣ [ R x 0 ] − [ β 1 β 2 ] ∣ ∣ 2 2 = arg min ⁡ x ∣ ∣ R x − β 1 ∣ ∣ 2 2 + ∣ ∣ β 2 ∣ ∣ 2 2    ⟺    arg min ⁡ x ∣ ∣ R x − β 1 ∣ ∣ 2 2 → R x = β 1 , x = R − 1 β 1 [ β 1 β 2 ] = Q T b \argmin_x ||Ax-b||^2_2=\argmin_x ||Q\begin{bmatrix} R \\ 0 \end{bmatrix}x-b|| \\ = \argmin_x ||\begin{bmatrix} R \\ 0 \end{bmatrix}x-Q^Tb||^2_2 \\ = \argmin_x ||\begin{bmatrix} Rx \\ 0 \end{bmatrix} - \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}||^2_2 \\ = \argmin_x ||Rx-\beta_1||^2_2 + ||\beta_2||^2_2 \\ \iff \argmin_x ||Rx-\beta_1||^2_2 \\ \to Rx=\beta_1,x=R^{-1}\beta_1 \\ \quad \\ \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = Q^Tb xargminAxb22=xargminQ[R0]xb=xargmin[R0]xQTb22=xargmin[Rx0][β1β2]22=

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值