2013浙江大学845自动控制原理第六题

在这里插入图片描述
(1)

系统方框图化简
在这里插入图片描述
在这里插入图片描述
系统的开环传递函数
G ( s ) H ( s ) = ( 1 − K 1 ) K c ( s + 2 ) ( s + K c K 1 ) G(s)H(s)=\frac{(1-K_1)K_c}{(s+2)(s+K_cK_1)} G(s)H(s)=(s+2)(s+KcK1)(1K1)Kc
K 1 = 0 K_1=0 K1=0,可以得到以 K c K_c Kc为参变量的根轨迹方程
K c s ( s + 2 ) = − 1 \frac{K_c}{s(s+2)}=-1 s(s+2)Kc=1
①根轨迹的起点
p 1 = 0 , p 2 = − 2 p_1=0, \quad p_2=-2 p1=0,p2=2
②根轨迹的终点为无穷远处

③实轴上的根轨迹: [ − 2 , 0 ] [-2,0] [2,0]

④根轨迹渐近线
φ = ( 2 k + 1 ) π 2 − 0 k = 0 , φ = 90 ° ; k = 1 , φ = 270 ° σ = − 2 + 0 2 = − 1 \begin{gathered} \varphi=\frac{(2k+1)\pi}{2-0}\\ k=0, \quad \varphi=90°; \quad k=1, \quad \varphi=270° \\ \sigma=\frac{-2+0}{2}=-1 \end{gathered} φ=20(2k+1)πk=0,φ=90°;k=1,φ=270°σ=22+0=1
⑤根轨迹的分离点
1 d + 2 + 1 d = 0 d = − 1 \begin{gathered} \frac{1}{d+2}+\frac{1}{d}=0 \\ d=-1 \end{gathered} d+21+d1=0d=1
⑥根轨迹与虚轴无交点

综上
在这里插入图片描述
K 1 K_1 K1为参变量时的根轨迹方程
K 1 K c ( s + 1 ) s 2 + 2 s + K c = − 1 K_1\frac{K_c(s+1)}{s^2+2s+K_c}=-1 K1s2+2s+KcKc(s+1)=1
①根轨迹的起点
p 1 , 2 = − 1 ± 1 − K c p_{1,2}=-1\pm \sqrt{1-K_c} p1,2=1±1Kc
②根轨迹的终点为 z = − 1 z=-1 z=1以及无穷远处

③实轴上的根轨迹:当 0 < K ⩽ 1 0<K\leqslant1 0<K1时,实轴上的根轨迹为 ( − ∞ , − 1 − 1 − k c ] (-\infin,-1-\sqrt{1-k_c}] (,11kc ] [ − 1 , − 1 + 1 − K c ] [-1,-1+\sqrt{1-K_c}] [1,1+1Kc ];当 K c > 1 K_c>1 Kc>1时,实轴上的根轨迹为 ( − ∞ , − 1 ] (-\infin,-1] (,1]

④根轨迹的分离点:当 0 < K ⩽ 1 0<K\leqslant1 0<K1时,根轨迹无分离点和会合点;当 K c > 1 K_c>1 Kc>1时,根轨迹的会合点
1 d + 1 + j 1 − K c + 1 d + 1 − j 1 − K c = 1 d + 1 d 1 = − 1 − 1 − K c , d 2 = − 1 + 1 − K c ( 舍 去 ) \begin{gathered} \frac{1}{d+1+j\sqrt{1-K_c}}+\frac{1}{d+1-j\sqrt{1-K_c}}=\frac{1}{d+1} \\ d_1=-1-\sqrt{1-K_c},\quad d_2=-1+\sqrt{1-K_c} (舍去) \end{gathered} d+1+j1Kc 1+d+1j1Kc 1=d+11d1=11Kc ,d2=1+1Kc ()
⑤根轨迹与虚轴无交点
⑥根轨迹的出射角
θ 1 = 180 ° , θ 2 = − 180 ° \theta_1=180°,\quad \theta_2=-180° θ1=180°,θ2=180°
综上, 0 < K ⩽ 1 0<K\leqslant1 0<K1
在这里插入图片描述
K c > 1 K_c>1 Kc>1
在这里插入图片描述
由根轨迹图可知,当 K c K_c Kc 0 + → + ∞ 0^+\rarr+\infin 0++变化时, K 1 > 0 K_1>0 K1>0,系统恒稳定。

(2)

系统的闭环传递函数
Φ ( s ) = s + K c K 1 s 2 + ( 2 + K c K 1 ) s + K c + K c K 1 \Phi(s)=\frac{s+K_cK_1}{s^2+(2+K_cK_1)s+K_c+K_cK_1} Φ(s)=s2+(2+KcK1)s+Kc+KcK1s+KcK1
(3)

K 1 = 0.5 K_1=0.5 K1=0.5,系统的根轨迹方程
0.5 K c s + 3 s ( s + 2 ) = − 1 0.5K_c\frac{s+3}{s(s+2)}=-1 0.5Kcs(s+2)s+3=1
根轨迹的分离点和会合点
1 d + 1 d + 2 = 1 d + 3 d 1 = − 1.268 ( 分 离 点 ) , d 2 = − 4.732 ( 会 合 点 ) \begin{gathered} \frac{1}{d}+\frac{1}{d+2}=\frac{1}{d+3} \\ d_1=-1.268(分离点),\quad d_2=-4.732(会合点) \end{gathered} d1+d+21=d+31d1=1.268(),d2=4.732()
根据幅值条件
K c = 0.5 × ∣ − 1.268 + 0 ∣ ∣ − 1.268 + 2 ∣ ∣ − 1.268 + 3 ∣ = 1.072 K c = 0.5 × ∣ − 4.732 + 0 ∣ ∣ − 4.732 + 2 ∣ ∣ − 4.732 + 3 ∣ = 14.928 \begin{gathered} K_c=0.5\times\frac{|-1.268+0||-1.268+2|}{|-1.268+3|}=1.072 \\ K_c=0.5\times\frac{|-4.732+0||-4.732+2|}{|-4.732+3|}=14.928 \end{gathered} Kc=0.5×1.268+31.268+01.268+2=1.072Kc=0.5×4.732+34.732+04.732+2=14.928
1.072 < K c < 14.928 1.072<K_c<14.928 1.072<Kc<14.928时,系统在 S S S左半平面存在一对共轭复根,系统衰减振荡。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值