最优传输论文(十七):Sinkhorn Distances: Lightspeed Computation of Optimal Transport论文原理

本文介绍了Sinkhorn距离,一种通过熵正则化优化的最优传输距离,解决了传统最优传输计算成本高的问题。通过熵约束,Sinkhorn距离可以使用Sinkhorn迭代快速计算,并在MNIST分类任务上表现出优于经典最优传输距离的性能。实验结果显示,Sinkhorn距离在计算速度上可以快几个数量级,并且在适当选择正则化参数λ时,性能更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

  • 这篇文章是sinkhorn的讲解论文。
  • 最佳传输距离是概率测度和特征直方图(histograms of features)的基本距离族(family)。尽管它们具有吸引人的理论性质、在检索任务中的优异性能和直观的公式,但它们的计算涉及线性程序的分辨率(如图像特征尺寸过大),每当这些度量的支持大小或直方图的维数超过几百时,其成本就会迅速变得令人望而却步。在这项工作中,我们提出了一个新的最优运输距离族,从最大化的角度来看待运输问题。我们用熵正则化项平滑了经典的最优传输问题,并证明了所得到的最优值也是一个距离,这个距离可以通过辛霍恩矩阵(sinkhorn)缩放算法以比传输解算器(如网络单纯型法)快几个数量级的速度来计算。我们还表明,这种正则化距离改进了MNIST分类问题上的经典最优运输距离。

介绍

  • 选择合适的距离来比较概率是统计机器学习中的一个关键问题。当对支持这些概率的概率空间知之甚少时,各种带有极小假设的信息散度被提出来扮演这一角色,其中包括海灵格散度(H散度)、χ2散度、全变差散度(total variation)或库尔巴克-莱布勒散度(KL散度)
  • 当概率空间是一个度量空间时,最佳传输距离
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值