目录
摘要
- 这篇文章是sinkhorn的讲解论文。
- 最佳传输距离是概率测度和特征直方图(histograms of features)的基本距离族(family)。尽管它们具有吸引人的理论性质、在检索任务中的优异性能和直观的公式,但它们的计算涉及线性程序的分辨率(如图像特征尺寸过大),每当这些度量的支持大小或直方图的维数超过几百时,其成本就会迅速变得令人望而却步。在这项工作中,我们提出了一个新的最优运输距离族,从最大化的角度来看待运输问题。我们用熵正则化项平滑了经典的最优传输问题,并证明了所得到的最优值也是一个距离,这个距离可以通过辛霍恩矩阵(sinkhorn)缩放算法以比传输解算器(如网络单纯型法)快几个数量级的速度来计算。我们还表明,这种正则化距离改进了MNIST分类问题上的经典最优运输距离。
介绍
- 选择合适的距离来比较概率是统计机器学习中的一个关键问题。当对支持这些概率的概率空间知之甚少时,各种带有极小假设的信息散度被提出来扮演这一角色,其中包括海灵格散度(H散度)、χ2散度、全变差散度(total variation)或库尔巴克-莱布勒散度(KL散度)。
- 当概率空间是一个度量空间时,最佳传输距离