50、【图】迷宫问题——BFS(C/C++版)

题目描述

给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1表示不可通过的墙壁。

最初,有一个人位于左上角 (1,1)处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。

请问,该人从左上角移动至右下角 (n,m)处,至少需要移动多少次。

数据保证 (1,1)处和 (n,m) 处的数字为 0,且一定至少存在一条通路。

输入格式

第一行包含两个整数 n和 m。
接下来 n行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。

输出格式

输出一个整数,表示从左上角移动至右下角的最少移动次数。

数据范围

1≤n,m≤100

输入样例:

5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

输出样例:

8

题目分析

在这里插入图片描述
在处理最短路径的问题,使用BFS进行解决。DFS虽然也能进行路径搜索,但找到最短路径的时间要比BFS时间长,因为BFS是一层层搜索,当找到终点时,必为最短路径。
在这里插入图片描述
在这里插入图片描述

算法实现

#include <iostream>
#include <cstring>
#include <queue>

using namespace std;

const int N = 110;

/*
typedef struct position{        // 标记当前位置的坐标
    int x, y;
}pos;
*/
typedef pair<int, int> pos;

int n, m;       // 地图长宽
int g[N][N];    // 存储地图
int d[N][N];    // 标记搜索到的点的距离
pos recordPre[N][N];
// pos recordPre[N][N];     // 记录[i][j]位置时,上一步的下标位置
//pos q[N * N];   // 构建队列存储位置

int bfs(){
    // 初始化d[N][N]
    memset(d, -1, sizeof d);
    d[0][0] = 0;        // 从(0,0)开始出发

    // 构建队列
    queue<pos> q;
    q.push({0, 0});
    // int front = 0, rear = 0;
    // q[rear++] = {0, 0}; // 将(0,0)入队

    // 存储四种移动位置的情况
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

    while(!q.empty()){
        auto e = q.front();
        q.pop();
        
        for(int i = 0; i < 4; i++){
            int x = e.first + dx[i], y = e.second + dy[i];
            if(x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1){
                d[x][y] = d[e.first][e.second] + 1;
                q.push({x, y});
                // 记录走过的路径
                recordPre[x][y] = e;
            }
        }
    }

    // while(front < rear){        // 判断队列是否为空
    //     pos e = q[front++];
    //     for(int i = 0; i < 4; i++){         // 从四个方向进行试探
    //         int x = e.x + dx[i];
    //         int y = e.y + dy[i];
    //         // 在允许范围内,则进入下一步
    //         if(x >= 0 && y>= 0 && x < n && y < m && g[x][y] == 0 && d[x][y] == -1){
    //             d[x][y] = d[e.x][e.y] + 1;
    //             // 记录走过的路径
    //             //recordPre[x][y] = e;
    //             q[rear++] = {x, y};
    //         }
    //     }
    // }

    // 从(n,m)向上输出路径
    // int x = n - 1, y = m - 1;
    // while(x || y){
    //     cout << x << " " << y << endl;
    //     pos e = recordPre[x][y];
    //     x = e.first;
    //     y = e.second;
    //     //x = e.x;
    //     //y = e.y;
    // }

    return d[n - 1][m - 1];
}

int main(){
    cin >> n >> m;
    for(int i = 0; i < n; i++)
        for(int j = 0; j < m; j++)
            cin >> g[i][j];
            
    cout << bfs() << endl;

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰阳星宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值