随机块模型(SBM)已成为复杂网络群体结构建模的重要工具。然而,随机块模型倾向于根据节点的程度对节点进行分组,从而使高次节点群在一起,尽管它们与其余网络的交互模式可能有所不同。因此,这种分组反映了节点度的各个方面,而不是网络中的总体统计模式。
为了减轻这个问题,引入了度矫正随机分块矩阵(DCSBM).在它们的模型中,引入了额外的参数建模节点度的异质性,允许将不同程度的节点聚在一起,并且他们证明了包括这个程度相关的节点。选择减少了根据节点的度分布对其进行分组的倾向。
在这篇文章中我们解决了DCSBM中的一些问题
(1)我们能否推断出需要进行度校正的程度?
(2)我们如何确定社区的数量?
(3)·我们如何预测DCSBM中的链接概率
无限度修正的随机块模型(2014)
最新推荐文章于 2025-01-30 20:01:27 发布