“花朵分类“ 手把手搭建【卷积神经网络】

本文通过使用TensorFlow的花朵数据集,详细介绍了如何搭建和训练一个卷积神经网络模型进行花朵分类。内容包括数据预处理、模型构建、训练、优化以及解决过拟合问题的方法,如数据增强和正则化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本文介绍卷积神经网络的入门案例,通过搭建和训练一个模型,来对几种常见的花朵进行识别分类;

使用到TF的花朵数据集,它包含5类,即:“雏菊”,“蒲公英”,“玫瑰”,“向日葵”,“郁金香”;共 3670 张彩色图片;通过搭建和训练卷积神经网络模型,对图像进行分类,能识别出图像是“蒲公英”,或“玫瑰”,还是其它。

本篇文章主要的意义是带大家熟悉卷积神经网络的开发流程,包括数据集处理、搭建模型、训练模型、使用模型等;更重要的是解在训练模型时遇到“过拟合”,如何解决这个问题,从而得到“泛化”更好的模型。

卷积神经网络 概念认识:一篇文章“简单”认识《卷积神经网络》(更新版)

卷积神经网络 简单模型搭建:手把手搭建一个【卷积神经网络】

思路流程

  1. 导入数据集
  2. 探索集数据,并进行数据预处理
  3. 构建模型(搭建神经网络结构、编译模型)
  4. 训练模型(把数据输入模型、评估准确性、作出预测、验证预测)  
  5. 使用训练好的模型
  6. 优化模型、重新构建模型、训练模型、使用模型

目录

一、导入数据集

二、探索集数据,并进行数据预处理

三、构建模型

四、训练模型

五、使用模型

六、优化模型、重新构建模型、训练模型、使用模型

过拟合

数据增强</

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗小树x

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值