13.前向传播和反向传播

我们将探讨神经网络中信息的流动方式,即前向传播和反向传播。

前向传播(Forward Propagation)

前向传播是神经网络中信息从输入层流向输出层的过程。输入数据经过线性组合(加权求和)和激活函数的非线性变换,在隐藏层之间反复迭代,直到产生最终的输出。这种网络结构通常被称为深度前馈网络(Deep Feedforward Network)或前馈神经网络(Feedforward Neural Network)。多层感知机(MLP)是其中的典型模型。

反向传播(Backpropagation)

在神经网络的训练过程中,我们使用损失函数来衡量预测结果与真实结果之间的差距。为了减小这个差距,我们需要找到一种方法来有效地更新网络的权重和偏置(即模型参数)。反向传播算法就是用来实现这一目标的。

反向传播算法本质上是一种计算神经网络每一层梯度(偏导数)的方法。它利用链式法则,从输出层的损失函数开始,逐层向前计算各个神经元权重和偏置的偏导数。这些偏导数构成了损失函数对权重和偏置向量的梯度,作为修改模型参数的依据。

在深度学习中,反向传播算法和梯度下降法是训练神经网络模型的两个核心步骤。反向传播算法用于计算损失函数对模型参数的梯度,而梯度下降法则利用这些梯度来更新模型参数,以最小化损失函数。常见的梯度下降法有批量梯度下降、随机梯度下降和小批量梯度下降等。

反向传播过程详解

以两层神经元为例,我们来详细说明反向传播的过程。首先,我们需要定义损失函数,比如均方误差(MSE)。然后,我们计算输出层神经元的误差(即预测值与真实值之间的差距),并将这个误差反向传播到隐藏层。在隐藏层,我们根据链式法则计算每个神经元权重和偏置的梯度,并使用这些梯度来更新模型参数。这个过程会重复进行,直到满足停止条件(如达到最大迭代次数或损失函数值小于某个阈值)。

下面我将用数学公式来展示反向传播的基本原理。

首先,我们假设一个简单的神经网络模型,它只包含一个隐藏层和一个输出层。对于隐藏层,我们有输入X、权重W1、偏置b1和激活函数f1;对于输出层,我们有隐藏层的输出Y1(也是输出层的输入)、权重W2、偏置b2和激活函数f2(对于输出层,有时我们直接使用恒等函数或softmax函数等作为激活函数)。

前向传播
  1. 隐藏层输出:
    Y1 = f1(W1 \cdot X + b1)
  2. 输出层输出(即模型的预测结果):
    \hat{Y} = f2(W2 \cdot Y1 + b2)
计算损失

假设我们使用均方误差作为损失函数,真实标签为Y,则损失函数为:
Loss = \frac{1}{2} (\hat{Y} - Y)^2

反向传播

我们的目标是计算损失函数对权重和偏置的偏导数,以便使用梯度下降等优化算法来更新这些参数。

  1. 计算损失对输出层权重的偏导数
    \frac{\partial Loss}{\partial W2} = (\hat{Y} - Y) \cdot f2'(W2 \cdot Y1 + b2) \cdot Y1^T
    这里,f2'是输出层激活函数的导数,Y1^TY1的转置。

  2. 计算损失对输出层偏置的偏导数
    \frac{\partial Loss}{\partial b2} = (\hat{Y} - Y) \cdot f2'(W2 \cdot Y1 + b2)

  3. 计算损失对隐藏层输出的偏导数(也称为误差项):
    \delta_2 = (\hat{Y} - Y) \cdot f2'(W2 \cdot Y1 + b2) \cdot W2^T
    这里,W2^TW2的转置。

  4. 计算损失对隐藏层权重的偏导数
    \frac{\partial Loss}{\partial W1} = \delta_2 \cdot f1'(W1 \cdot X + b1) \cdot X^T

  5. 计算损失对隐藏层偏置的偏导数
    \frac{\partial Loss}{\partial b1} = \delta_2 \cdot f1'(W1 \cdot X + b1)

在得到这些偏导数后,我们就可以使用梯度下降等优化算法来更新权重和偏置,从而优化模型的性能。

请注意,以上公式是基于一个简单的两层神经网络模型的,对于更复杂的网络结构(如多层感知机、卷积神经网络等),反向传播的计算过程会更为复杂,但基本原理是相同的。

生活举例

假设我们有三个人在玩“你画我猜”的游戏,第一个人向第二个人描述一幅画,然后第二个人再向第三个人描述,最后由第三个人猜出画的内容。

  1. 前向传播
    • 第一个人(输入层)向第二个人(隐藏层)描述画的内容。
    • 第二个人理解后,再向第三个人(输出层)描述。
    • 第三个人根据第二个人的描述猜出画的内容(输出结果)。
  2. 计算损失
    • 假设第三个人猜的内容与真实答案有差距,我们计算这个差距(损失函数值)。
  3. 反向传播
    • 第三个人发现自己猜错了,于是他告诉第二个人:“我猜的和真实答案有差距,你在描述时可能哪里说得不太清楚。”
    • 第二个人听了第三个人的反馈后,反思自己的描述,然后告诉第一个人:“我在描述时可能有些模糊,下次我们可以这样描述更清楚一些。”
    • 第一个人听了第二个人的反馈后,也对自己的描述进行了调整。
  4. 参数更新
    • 在这个过程中,每个人都在调整自己的描述方式(更新参数),以便下一次能更好地传递信息。

这个例子虽然简单,但很好地解释了反向传播的基本思想:通过逐层传递梯度信息来优化模型参数,使模型性能逐渐提升。

  • 7
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值