深度学习介绍

本文介绍了深度学习在AI领域的多个关键任务,包括图片分类(如ImageNet达到5%错误率)、物体检测与分割、风格迁移、人脸合成、文本生成图像、文本生成以及无人驾驶的应用。同时提到了自然语言处理的重要性,并关注了模型可解释性的讨论。
摘要由CSDN通过智能技术生成

1 AI地图

在这里插入图片描述
自然语言处理是感知的范围,人几秒内科研感知。
在这里插入图片描述

2 深度学习任务

2.1 图片分类

在这里插入图片描述
https://image-net.org/index.php
在这里插入图片描述
2017年就可以做到5%以内。

2.2 物体检测和分割

在这里插入图片描述

2.3 样式迁移

在这里插入图片描述

2.4 人脸合成

在这里插入图片描述

2.5 文字生成图片

在这里插入图片描述

2.6 文字生成

在这里插入图片描述

2.7 无人驾驶

在这里插入图片描述

3 案例研究

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 question

可解释性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值