深度学习:lora微调

本文介绍了Lora(低秩适应)技术,一种在保持大模型原始参数不变的情况下,通过添加少量可训练参数进行微调的方法。通过使用小矩阵表示权重增量,减少资源消耗并控制过拟合风险。Lora_rank的选择对效果至关重要。
摘要由CSDN通过智能技术生成

  lora微调是大模型常用的微调方法。
  lora(Low-Rank Adaptation的缩写)在保持原始模型参数不变的同时,在模型中添加了一小部分可训练参数。
  正常神经网络:输入x -> 全连接层(w) -> 输出y,训练时输入x,y数据来更新参数w,使得loss最小,w达到最优。但在大模型中,参数量都是几十几百亿,计算量极大,在进行梯度计算时,内存硬件都无法支持。
  而lora并不是修改全部参数,而是加个“外挂“,即原来是y = wx +b ,现在是y = wx + w’x +b,梯度下降时,只修改 w’ 以起到对矩阵w改变的作用。只需要修改很小的w’(这是我们加上的),这个技术就叫lora技术。(w’是指微调过程中产生的更新量(权重增量),而这个权重增量使用两个矩阵表示)
  例如:输入x的维度为d维,输出y的维度为d维,那么权重维度维d*d。而外挂则是两个矩阵A*B(A、B矩阵维度为r*d,d*r),可以发现A*B=d*d,和w矩阵一样,但参数量变成了2*d*r(r一般为8,10,12,…),参数量的变化远远小于原来的变化。
在这里插入图片描述
其实就是将一个d*d矩阵,拆成了两个小矩阵:r*d和d*r。参数量变成了d*r + d*r,并且r<<d,所以参数变化远远小于原来,达到了减少资源消耗。
而所谓的lora_rank就是这个r,在代码的实际运用中可以自己设置。r越大,自身数据对模型起到的作用越大,r越小,自身数据对模型起到的作用越小
(增加秩会增加可训练参数的数量,LoRA 微调中的秩大小并不是越大越好,对于小型数据集如果r=1就可以达到很不错的效果,即便增加r得到的结果也没有太大差别,还会导致更高程度的过拟合,增加运行时间成本。因此选一个合适的lora_rank十分重要)

LoRA 的基本原理是冻结预训练好的模型权重参数,在冻结原模型参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数(原来参数不改变,改变并联的参数,但并联的参数也太多了怎么办?就用两个小矩阵表示)
y = wx +b -> y = wx + w’x +b -> y = wx +A*B*x +b

在实战操作中,PEFT库可以用来微调BERT模型,以进行文本情感分类任务。首先,我们需要准备一个包含大量文本和标签的数据集,用于训练和验证BERT模型。然后,我们需要利用PEFT库中提供的工具和接口,将数据集转换成BERT模型可接受的格式,并进行数据预处理,如分词和填充等操作。 接着,我们可以利用PEFT库中提供的预训练模型,加载BERT模型的参数和网络结构,并在数据集上进行微调微调的过程中,我们可以通过调整学习率、批大小和训练轮数等超参数,来优化模型的性能。在每个训练轮数结束后,我们可以利用PEFT库中的评估工具对模型进行评估,以了解模型在验证集上的性能表现。 最后,当模型在验证集上的性能达到满意的水平后,我们可以使用PEFT库提供的保存模型工具,将微调后的BERT模型保存下来,以备在实际应用中使用。通过PEFT库的实战操作,我们可以有效地利用BERT模型进行文本情感分类任务,提高模型的准确性和泛化能力,从而更好地满足实际应用的需求。 PEFT库的实战操作不仅帮助我们更好地理解和使用BERT模型,也为我们提供了一套完整的工具和流程,使得模型训练和应用变得更加简单和高效。 PEFT库实战(一): lora微调BERT(文本情感分类) 的操作流程清晰,易于上手,为我们在文本情感分类任务中的应用提供了有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值