多模态情感分析——基于交叉多头注意力CMA进行图文多模态融合(含MVSA数据集)

1.模型结构

模型以BERT系列和ResNet系列为基础,分别处理文本和图像输入。文本处理模块基于预训练的BERT系列模型进行文本特征提取,并通过一个全连接层进行进一步的特征变换。图像处理模块采用预训练的ResNet系列模型,提取图像特征,并进行特征变换。多模态融合模块利用交叉多头注意力机制(CMA)将文本和图像特征进行融合,并通过全连接层进行分类。

图片

2.对比模型

(1)图文特征直接进行拼接:TICat

text_feature = self.text_model(texts, texts_mask)
img_feature = self.img_model(imgs)
prob_vec = self.classifier(torch.cat([text_feature, img_feature], dim=1))
pred_labels = torch.argmax(prob_vec, dim=1)

(2)图文特征进行加和:TIAdd


text_feature = self.text_model(texts, texts_mask)
img_feature = self.img_model(imgs)
text_prob_vec = self.text_classifier(text_feature)
img_prob_vec = self.img_classifier(img_feature)
prob_vec = torch.softmax((text_prob_vec + img_prob_vec), dim=1)       
pred_labels = torch.argmax(prob_vec, dim=1)

3.数据集介绍

数据集链接:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值