[HSRC2016]遥感图像舰船旋转目标检测数据集——HSRC2016一类、HSRC2016四类

图片

注:HSRC数据集总数为1680张,但是只有1061张为有效进行标注的图像。在训练集、验证集和测试集中分别包含436、181和444张图像。

1. HRSC简介

1.1 数据说明

HRSC2016是西北工业大学采集的用于轮船的检测的数据,包含4个大类19个小类共2976个船只实例信息。论文中特别指出他们的数据集是高分辨率数据集,分辨率介于0.4m和2m之间。数据集所有图像均来自六个著名的港口,包括海上航行的船只和靠近海岸的船只,船只图像的尺寸范围从300到1500,大多数图像大于1000x600。

1.2 HRSC数据格式

原始数据链接

HRSC2016 | Kaggle

图片

### 下载并应用 HRSC2016 数据集于 YOLO 模型训练 HRSC2016 是一个专注于遥感场景下的船舶检测数据集。为了将其应用于 YOLO 模型的训练,以下是具体的操作方法: #### 1. 数据集下载 HRSC2016 的官方资源通常可以通过其官方网站或其他公开学术平台获取。需要注意的是,在下载之前应仔细查阅该数据集的相关版权和使用条款[^1]。 - **访问官网**:前往 HRSC2016 官方网站或相关发布页面。 - **注册账号**:部分数据集可能需要用户注册账户以获得下载权限。 - **下载链接**:找到对应的下载区域,按照提示完成数据包的下载。 #### 2. 数据预处理 YOLO 模型对输入数据有一定的格式要求,因此需将 HRSC2016 数据转换为适合 YOLO 使用的形式。 ##### (a) 文件结构调整 创建符合 YOLO 需求的数据目录结构。典型的文件夹布局如下: ``` dataset/ ├── images/ # 存放原始图像 │ ├── train/ │ └── val/ └── labels/ # 存放标注文件(txt) ├── train/ └── val/ ``` ##### (b) 标签格式转换 HRSC2016 原始标签可能采用不同的坐标表示方式(如多边形),而 YOLO 支持的标准标签格式为归一化的边界框中心点坐标及宽高比例[^3]。 假设某目标的真实尺寸为 `(x_min, y_min)` 和 `(x_max, y_max)`,则对应 YOLO 格式的计算公式为: ```python width = abs(x_max - x_min) height = abs(y_max - y_min) center_x = x_min + width / 2 center_y = y_min + height / 2 # 归一化到 [0, 1] normalized_center_x = center_x / image_width normalized_center_y = center_y / image_height normalized_width = width / image_width normalized_height = height / image_height ``` 最终每行标签内容形式为 `<class_id> normalized_center_x normalized_center_y normalized_width normalized_height`。 ##### (c) 划分数据集 根据实际需求划分训练集、验证集以及可选的测试集,并记录各子集中图片的绝对路径至 `train.txt` 和 `val.txt` 中。 #### 3. 修改配置文件 编辑 YOLO 所使用的 YAML 配置文件 (`myvoc.yaml`) 来指定新数据集的位置及其类别数: ```yaml train: path/to/train.txt # 训练集列表 val: path/to/val.txt # 验证集列表 nc: 1 # 类别总数(此处仅为舰船一类) names: ['ship'] # 类别名称数组 ``` 同时更新模型架构定义文件(如 `yolov5s.yaml`)中的分类数目字段。 #### 4. 开始训练 执行命令启动训练过程,确保 GPU 可用的情况下加速运算效率: ```bash python train.py --weights yolov5s.pt \ --cfg models/yolov5s.yaml \ --data data/myvoc.yaml \ --epochs 100 \ --batch-size 16 \ --img 640 \ --device 0 ``` --- ### 注意事项 - 如果遇到内存不足的情况,尝试降低批量大小参数 `--batch-size` 或减少分辨率选项 `--img`。 - 在正式训练前推荐先运行少量迭代次数的小规模调试版本来确认一切正常工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值