多模态情感分析自研代码——基于Transformer-Lstm-交叉注意力进行三模态情感分析

1 方法简介

在本设计中采用了Transformer-LSTM和Attention模块分别对文本、音频和图像特征进行建模,并通过Tensor Fusion Network (TFN) 实现最终的特征融合,以下将详细介绍模型的架构及核心模块的原理。

文本特征处理:结合Transformer编码器和双向LSTM对文本序列建模。

音频和图像特征增强:通过SEAttention分别对音频和图像特征进行增强。

多模态特征融合:通过交叉注意力和TFN对三种模态的特征进行联合建模与融合。

图片

(1)文本特征处理

文本数据具有序列性和上下文相关性,Transformer和LSTM的结合能够有效捕获全局依赖和时间序列信息。Transformer编码器是模型的第一部分,负责从输入序列中提取全局特征。其核心是自注意力机制和前馈网络。Transformer通过自注意力机制捕获序列中每个位置的全局依赖关系。核心公式如下:

图片

Transformer的全局建模能力可以捕获长期依赖,但其序列建模能力有限。为此,引入双向LSTM进一步提取时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值