近3三年多模态情感分析论文及其代码

排行榜:

在CMU-MOSE数据集排行榜

CMU-MOSEI Benchmark (Multimodal Sentiment Analysis) | Papers With Code

在MOSI数据集排行榜

MOSI Benchmark (Multimodal Sentiment Analysis) | Papers With Code

2022年

M-SENA: An Integrated Platform for Multimodal Sentiment Analysis

ACL;ACL ; star:317;2022

UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion Recognition

star:44; 2022;  MOSI数据排行第1

MMLatch: Bottom-up Top-down Fusion for Multimodal Sentiment Analysis

star:14; 2022; CMU-MOSEI排行第3

The MuSe 2022 Multimodal Sentiment Analysis Challenge: Humor, Emotional Reactions, and Stressstar:19;2022;

Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors

star:15;2022;

2021年

Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal Sentiment Analysis

star:444; 2021;

Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis

EMNLP;star:444 ;2021;CMU-MOSEI的sota4;

Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis

ACL;   star:317;  2021

​​​​​​CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks

EMNLP;   star:190; 对比学习;2021;

Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training EMNLP;   star:70; 对比学习(好像都用在ABSA上);2021;

The MuSe 2021 Multimodal Sentiment Analysis Challenge: Sentiment, Emotion, Physiological-Emotion, and Stress

star:34; 2021;

2020年

​​​​​​CH-SIMS: A Chinese Multimodal Sentiment Analysis Dataset with Fine-grained Annotation of ModalityACL;star:317 2020

MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis

star:105; 2020

### 复现多模态情感分析的方法和代码 #### 准备环境 为了成功复现多模态情感分析的研究成果,首先需要准备合适的开发环境。建议使用 Python 3.7 或更高版本,并安装 PyTorch 深度学习框架[^2]。 ```bash conda create -n multimodal python=3.8 conda activate multimodal pip install torch torchvision torchaudio ``` #### 数据集获取与预处理 数据集的选择对于实验的成功至关重要。通常使用的公开数据集包括 IEMOCAP 和 MELD 等。这些数据集中包含了音频、视频以及文本等多种形式的数据。下载所需数据集后,需对其进行必要的清理和转换操作以便后续训练模型所用。 #### 构建基础网络结构 基于自监督多任务学习构建模态特定表示的学习机制可以有效提高跨不同感官输入的一致性和互补性[^1]。下面是一个简单的神经网络定义例子: ```python import torch.nn as nn class MultiModalNet(nn.Module): def __init__(self, text_dim, audio_dim, video_dim, hidden_size, num_classes): super(MultiModalNet, self).__init__() # 定义各单模态编码器 self.text_encoder = nn.Linear(text_dim, hidden_size) self.audio_encoder = nn.LSTM(input_size=audio_dim, hidden_size=hidden_size//2, bidirectional=True, batch_first=True)[0] self.video_encoder = nn.Conv1d(in_channels=video_dim, out_channels=hidden_size, kernel_size=3) # 融合层 self.fusion_layer = nn.Linear(hidden_size * 3, num_classes) def forward(self, texts, audios, videos): txt_out = F.relu(self.text_encoder(texts)) aud_out, _ = self.audio_encoder(audios) vid_out = F.max_pool1d(F.relu(self.video_encoder(videos)), kernel_size=videos.size(-1)).squeeze(2) combined = torch.cat((txt_out.mean(dim=1), aud_out[:, :, :].mean(dim=1), vid_out), dim=-1) output = self.fusion_layer(combined) return output ``` #### 训练过程配置 采用适当优化算法(如 AdamW),设定损失函数(交叉熵损失适用于分类任务),并通过早停法防止过拟合现象的发生。同时记录验证集上的表现指标来评估模型性能变化趋势。 #### 测试与评价 完成训练之后,在独立测试集合上运行最佳权重对应的模型实例,收集预测结果并与真实标签对比计算各项评测分数,比如准确率、F1 值等统计量。 #### 实际应用场景拓展 通过引入上下文感知图卷积网络(COGMEN),可以在更复杂的交互环境中进一步增强情绪识别的效果;而 CENet 则展示了其强大的多模态融合能力,不仅限于基本的情感类别判断,还能支持更加细致入微的情绪状态解析[^4]。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值