CF Distance: A New Domain Discrepancy Metric and Application to Explicit Domain Adaptation for Cross

1.作者介绍

复旦大学大数据学院庄吓海老师团队 主要研究多模态医学影像分析
庄老师在MICS上的报告 zxh@fudan.edu.cn
吴富平 也是复旦大学老师 但是没有相关的百度搜索结果
两位老师的主要方向应该是心脏图片的多模态配准和分割

2.主要贡献

本篇paper主要讲的是 CF Distance 主要是心脏方面的多模态迁移学习, 
他不是和以前一样隐式的通过对抗学习最小化差异,而是清晰的迁移学习,(This metric, referred to as CF distance, enables explicit
domain adaptation, in contrast to the implicit manners
minimizing domain discrepancy via adversarial training.)
迁移学习:它的目标是将这两个域转换为一个共同空间,其中它们分布的差异可以最小化。因此,一个有效的**域差异度量**对于解决这一问题至关重要。

在医学分割领域,大多数都是使用迁移学习和生成对抗网络来生成数据,
discriminators: 用来判断模态不变特征	
generators:      用来生成新的图片
通过隐式的消除这二者之间的差别来实现训练
但是其还存在很大的问题:如何找到纳什均衡点 ,需要额外的坚定网络等维问题。

1.提出了一个高效的网络结合先验知识和网络重构实现了图像分割
2.提出了CF distance

3. CF distance

这里是文章的重点,本人数学基础不是很好,如有差错还请见谅。
ZT 代表 从target domain(目标域)获取的数据
ZS 代表从source domain(源域)
都是映射之后的结果
在这里插入图片描述
分别代表ZT 和ZS的分布

我们都可以看成上述两个东西PzT(z)是z空间域的信息
将其转换为频域

在这里插入图片描述
在这里插入图片描述
傅里叶变化公式如下
在这里插入图片描述
带入之后我们可以得到:

在这里插入图片描述
又因为CFs和他们是互相确定的 所以可以知道

在这里插入图片描述
当f 相同的时候 他们的p 相同,可以使用p来代表他们的f的距离
在这里插入图片描述
正常情况下,我们应该使用全集U来进行计算,这显然不现实。同时高频率的信息有可能被忽视,所以我们使用了小批量数据进行计算,
在这里插入图片描述

设计了两种种损失函数:

  1. Sliced CF Distance Loss:
    在这里插入图片描述
    受[两个分布之间的切片的沃瑟斯坦距离的启发,我们将切片的CF距离定义为一种替代方法。

  2. The Mean Loss:
    我们还使用了一阶统计信息,即平均值,来实现域的自适应。我们用zS和zT期望值的欧几里得距离明确定义平均损失,如下
    在这里插入图片描述

4.网络架构

在这里插入图片描述
很经典的U-net 作为Encoder层
分割器:基于编码器中的多尺度结构,我们设计了三个网络,每个网络具有两个顺序卷积块(包括一个卷积层、一个实例归一化层和一个激活层)。每个网络以编码器提取的某一层次的潜在特征为输入,并输出相应尺度的分割。这三个尺度的结果,然后通过卷积层融合,生成最终的分割。
重构器:模块由几个残余块和两个顺序卷积块组成。以目标图像的潜在特征为输入,尽可能与编码器输入图像相似的输出图像。该技术有助于约束目标图像分割中的解剖形状。
explicit adaptation:CFD loss使得两个域之间的距离变小

5.结果如下:

在这里插入图片描述

基本上都会有一到两个点的提升
在这里插入图片描述
多种比较不详细介绍了

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值