为什么不能对随机过程进行求导

在机器学习和深度学习的上下文中,我们通常不能直接对随机过程进行求导,原因有几点:

随机性:随机过程本身包含内在的随机性,其输出是在某个概率分布下随机生成的。这意味着随机过程的输出不是唯一确定的,而是依赖于随机变量或随机噪声的。由于这种随机性,我们不能直接计算随机过程关于某个参数的导数,因为导数是一个确定的量,而随机过程的输出是随机的。

非连续性:许多随机过程(如离散时间随机过程)在时间上是不连续的,这意味着它们的输出值在时间点上可能会发生跳变。由于导数是基于极限和连续性的概念定义的,因此我们不能直接对非连续的随机过程求导。

不可微分的采样操作:在深度学习中,我们经常需要从某个分布中采样数据点来作为随机变量的实现。然而,采样操作本身是一个不可微分的操作,因为采样结果是一个离散的、随机的值,而不是一个连续可微的函数输出。这导致了我们不能直接对包含采样操作的随机过程进行求导。

然而,通过重参数化技巧(Reparameterization Trick),我们可以将随机变量的采样过程转化为一个确定性的、可微分的操作。具体来说,我们引入一个与随机变量同分布的辅助随机变量(如标准正态分布),并使用一个确定性函数(通常是该分布的逆CDF或变换后的CDF)将该辅助随机变量映射到原始随机变量的分布上。这样,我们就可以通过改变确定性函数的参数来间接地改变随机变量的值,并且由于确定性函数是可微分的,我们就可以对整个过程进行求导了。

在变分自编码器(VAEs)等模型中,重参数化技巧被广泛应用于处理与随机变量相关的损失函数,从而可以方便地使用基于梯度的优化算法进行训练。通过这种方式,我们可以将随机性引入到模型中,同时仍然能够利用梯度下降等优化算法来优化模型参数。

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,我可以回答这个问题。以下是一个5层全连接网络的示例,其中激励函数使用ReLU,损失函数为均方误差(MSE),反向传播过程使用手动计算梯度的方法实现: ``` import numpy as np # 定义激励函数ReLU def ReLU(x): return np.maximum(, x) # 定义损失函数MSE def MSE(y_pred, y_true): return np.mean((y_pred - y_true) ** 2) # 定义反向传播函数 def backward(x, y_pred, y_true, lr): # 计算输出层的误差 delta = 2 * (y_pred - y_true) # 更新输出层的权重和偏置 W5 -= lr * np.dot(h4.T, delta) b5 -= lr * np.sum(delta, axis=, keepdims=True) # 计算第4层的误差 delta = np.dot(delta, W5.T) * (h4 > ) # 更新第4层的权重和偏置 W4 -= lr * np.dot(h3.T, delta) b4 -= lr * np.sum(delta, axis=, keepdims=True) # 计算第3层的误差 delta = np.dot(delta, W4.T) * (h3 > ) # 更新第3层的权重和偏置 W3 -= lr * np.dot(h2.T, delta) b3 -= lr * np.sum(delta, axis=, keepdims=True) # 计算第2层的误差 delta = np.dot(delta, W3.T) * (h2 > ) # 更新第2层的权重和偏置 W2 -= lr * np.dot(h1.T, delta) b2 -= lr * np.sum(delta, axis=, keepdims=True) # 计算第1层的误差 delta = np.dot(delta, W2.T) * (h1 > ) # 更新第1层的权重和偏置 W1 -= lr * np.dot(x.T, delta) b1 -= lr * np.sum(delta, axis=, keepdims=True) # 初始化权重和偏置 W1 = np.random.randn(1, 10) b1 = np.zeros((1, 10)) W2 = np.random.randn(10, 20) b2 = np.zeros((1, 20)) W3 = np.random.randn(20, 30) b3 = np.zeros((1, 30)) W4 = np.random.randn(30, 40) b4 = np.zeros((1, 40)) W5 = np.random.randn(40, 1) b5 = np.zeros((1, 1)) # 训练模型 lr = .01 for i in range(10000): # 生成随机数据 x = np.random.randn(100, 1) y_true = x ** 2 + 2 * x - 3 # 前向传播 h1 = ReLU(np.dot(x, W1) + b1) h2 = ReLU(np.dot(h1, W2) + b2) h3 = ReLU(np.dot(h2, W3) + b3) h4 = ReLU(np.dot(h3, W4) + b4) y_pred = np.dot(h4, W5) + b5 # 计算损失函数 loss = MSE(y_pred, y_true) # 反向传播 backward(x, y_pred, y_true, lr) # 打印损失函数 if i % 100 == : print('Iteration %d, loss = %f' % (i, loss)) # 测试模型 x_test = np.linspace(-5, 5, 100).reshape(-1, 1) y_test = x_test ** 2 + 2 * x_test - 3 h1 = ReLU(np.dot(x_test, W1) + b1) h2 = ReLU(np.dot(h1, W2) + b2) h3 = ReLU(np.dot(h2, W3) + b3) h4 = ReLU(np.dot(h3, W4) + b4) y_pred = np.dot(h4, W5) + b5 print('Test loss = %f' % MSE(y_pred, y_test)) ``` 这个网络可以实现目标函数 y=x^2+2x-3 的拟合。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

焉知有理

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值